skip to main content

Title: Scholarship Program Initiative via Recruitment, Innovation, and Transformation (SPIRIT): S-STEM Program Initiatives and Early Results
This paper describes the structure, project initiatives, and early results of the NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University (WCU). SPIRIT is a scholarship program focused on building an interdisciplinary engineering learning community involved in extensive peer and faculty mentoring, vertically-integrated Project Based Learning (PBL), and undergraduate research experiences. The program has provided twenty-six scholarships and academic resources to a diverse group of engineering and engineering technology students. Results from several project initiatives have been promising. Recruitment efforts have resulted in a demographically diverse group of participants whose retention rates within the program have held at 82%. A vibrant learning community has organically developed where participants are provided both academic and non-academic support across several majors and grade classes. Since May 2014, SPIRIT undergraduate research projects have resulted in forty-five presentations at seven different undergraduate and professional conferences. Twenty-seven PBL and five integrated open-ended design challenges have been completed, involving several corporate sponsors and encompassing a wide-range of engineering topics. Results from a ninety-question participant survey revealed several perceived program strengths and areas of possible improvement. Overall, the participants agreed or strongly agreed that the program had been a positive more » experience (4.0/4.0) and had helped them to prepare for a career in engineering (3.8/4.0). Undergraduate research activities conducted through the program have helped the participants to understand the steps involved in research processes (3.8/4.0), to appreciate the need for a combination of analysis and hands-on skills (4.0/4.0), and to become more resilient toward academic challenges and obstacles (3.8/4.0). The program’s learning community helped participants build relationships with other students outside of their major (3.1/4.0) as compared to normal course communities. Several participants believed that they were more comfortable with seeking advice from upper class students within the program (3.7/4.0) as compared to upper class students outside the program (2.7/4.0). Vertically-integrated PBL activities helped participants in understanding project management techniques (3.8/4.0), teaming techniques (3.7/4.0), and to assume a leadership role on projects (3.6/4.0). Indicated areas of program improvement included the desire and need for a system of peer-review for the students’ undergraduate research papers; a perceived hindrance to benefit from “journaling” about their program experiences (3.6/4.0); and a need for continued strengthening of activities associated with graduate school application processes as well as preparations for job interviews and applications. This paper presents details of the program initiatives, a compilation of survey results with necessary discussion, and areas of possible improvement going forward. « less
Authors:
; ; ;
Award ID(s):
1355872
Publication Date:
NSF-PAR ID:
10067335
Journal Name:
American Society for Engineering Education
Sponsoring Org:
National Science Foundation
More Like this
  1. The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents resultsmore »from the program activities, including: cohort recruitment and demographics; support services; undergraduate research; vertically integrated PBL activities; and the external review of the program. Similar programs may benefit from the findings and the external review report, which contained several accolades as well as suggestions for potential continuous improvement.« less
  2. The National Science Foundation’s funded ($625,179) SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-Seven new and continuing students were recruited into horizontally and vertically integrated cohorts that will be nurtured and developed in a Project Based Learning (PBL) community characterized by extensive faculty mentoring, fundamental and applied undergraduate research, hands-on design projects, and industry engagement. Our horizontal integration method creates sub-cohorts with same-year students from different disciplines (electrical, mechanical, etc.) to work in an environment that reflects how engineers work in the real world. Our vertical integration method enables sub-cohorts from different years to work together on different stages of projects in a PBL setting. The objectives of the SPIRIT program will ensure an interdisciplinary environment that enhances technical competency through learning outcomes that seek to improve critical skills such as intentional learning, problem solving, teamwork, management, interpersonal communications, and leadership. Support for the student scholars participating in this program incorporates several existing support services offered by the host institution and school, including a university product development center. This paper will discussmore »several aspects of the program including participant selection and initial cohort demographics; implementation of the vertical-based cohort model in PBL; program and student assessment models; and associated student activities and artifact collection used to foster student success in the program and after graduation. Successful implementation of the SPIRIT program will create a replicable model that will broadly impact 21st century engineering education and workforce preparedness.« less
  3. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduatesmore »with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field.« less
  4. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have likedmore »to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs.« less
  5. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have likedmore »to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs.« less