skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scholarship Program Initiative via Recruitment, Innovation, and Transformation (SPIRIT): S-STEM Program Initiatives and Early Results
This paper describes the structure, project initiatives, and early results of the NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University (WCU). SPIRIT is a scholarship program focused on building an interdisciplinary engineering learning community involved in extensive peer and faculty mentoring, vertically-integrated Project Based Learning (PBL), and undergraduate research experiences. The program has provided twenty-six scholarships and academic resources to a diverse group of engineering and engineering technology students. Results from several project initiatives have been promising. Recruitment efforts have resulted in a demographically diverse group of participants whose retention rates within the program have held at 82%. A vibrant learning community has organically developed where participants are provided both academic and non-academic support across several majors and grade classes. Since May 2014, SPIRIT undergraduate research projects have resulted in forty-five presentations at seven different undergraduate and professional conferences. Twenty-seven PBL and five integrated open-ended design challenges have been completed, involving several corporate sponsors and encompassing a wide-range of engineering topics. Results from a ninety-question participant survey revealed several perceived program strengths and areas of possible improvement. Overall, the participants agreed or strongly agreed that the program had been a positive experience (4.0/4.0) and had helped them to prepare for a career in engineering (3.8/4.0). Undergraduate research activities conducted through the program have helped the participants to understand the steps involved in research processes (3.8/4.0), to appreciate the need for a combination of analysis and hands-on skills (4.0/4.0), and to become more resilient toward academic challenges and obstacles (3.8/4.0). The program’s learning community helped participants build relationships with other students outside of their major (3.1/4.0) as compared to normal course communities. Several participants believed that they were more comfortable with seeking advice from upper class students within the program (3.7/4.0) as compared to upper class students outside the program (2.7/4.0). Vertically-integrated PBL activities helped participants in understanding project management techniques (3.8/4.0), teaming techniques (3.7/4.0), and to assume a leadership role on projects (3.6/4.0). Indicated areas of program improvement included the desire and need for a system of peer-review for the students’ undergraduate research papers; a perceived hindrance to benefit from “journaling” about their program experiences (3.6/4.0); and a need for continued strengthening of activities associated with graduate school application processes as well as preparations for job interviews and applications. This paper presents details of the program initiatives, a compilation of survey results with necessary discussion, and areas of possible improvement going forward.  more » « less
Award ID(s):
1355872
PAR ID:
10067335
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents results from the program activities, including: cohort recruitment and demographics; support services; undergraduate research; vertically integrated PBL activities; and the external review of the program. Similar programs may benefit from the findings and the external review report, which contained several accolades as well as suggestions for potential continuous improvement. 
    more » « less
  2. The National Science Foundation’s funded ($625,179) SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-Seven new and continuing students were recruited into horizontally and vertically integrated cohorts that will be nurtured and developed in a Project Based Learning (PBL) community characterized by extensive faculty mentoring, fundamental and applied undergraduate research, hands-on design projects, and industry engagement. Our horizontal integration method creates sub-cohorts with same-year students from different disciplines (electrical, mechanical, etc.) to work in an environment that reflects how engineers work in the real world. Our vertical integration method enables sub-cohorts from different years to work together on different stages of projects in a PBL setting. The objectives of the SPIRIT program will ensure an interdisciplinary environment that enhances technical competency through learning outcomes that seek to improve critical skills such as intentional learning, problem solving, teamwork, management, interpersonal communications, and leadership. Support for the student scholars participating in this program incorporates several existing support services offered by the host institution and school, including a university product development center. This paper will discuss several aspects of the program including participant selection and initial cohort demographics; implementation of the vertical-based cohort model in PBL; program and student assessment models; and associated student activities and artifact collection used to foster student success in the program and after graduation. Successful implementation of the SPIRIT program will create a replicable model that will broadly impact 21st century engineering education and workforce preparedness. 
    more » « less
  3. null (Ed.)
    Abstract The objectives of this study were to evaluate the current status of exposure to bio-engineering research in community college (CC) students and University of Maryland Baltimore County (UMBC) students, and to estimate relationships between research activities sponsored by the Mechanical Engineering (ME) S-STEM Scholarship Program and improvement in student enrollment/diversification, retention rates, and graduation rates. The analysis drew on data from ME undergraduate academic records at UMBC from 2008 to 2019. A survey was designed to assess the research exposure of CC and UMBC students and their evaluation of the research components included in recruitment and curriculum activities. Results show that exposure to research measured by attending a research seminar was low for the participants, around 37% for CC students and 21% for ME students at UMBC. The survey results indicate the positive impact of the scholarship programs at UMBC on the research exposure and research experience. The impact is more evident in students who originally transferred from a CC. The large increase in recruited female and CC students over the past 10 years indicated that the research-related activities of the ME S-STEM program played an instrumental role in those increases. Because of the research-related activities, the ME S-STEM program achieved retention and graduation rates higher than those in the ME undergraduate program (89% versus 60% for the 6 year graduation rate), as well a higher percentage of students enrolled in graduate school (30% versus 10%). We conclude that there is still a need to implement research-related activities in the ME undergraduate program, starting with student recruitment and continuing through the academic program. Results suggest that there is a positive impact of ME S-STEM research activities on student diversification, retention rates, and percentage of our graduates who are pursuing graduate degree. 
    more » « less
  4. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented. 
    more » « less
  5. This report describes an approach to building a cohort of students in a graduate software engineering program supported by the NSF S-STEM scholarship. We used many agile principles for building and sustaining the cohort, which is scaffolded around the students' academic studies and their simultaneous work on an externally sourced software development project. We discuss how the agile principles were applied in practice in this S-STEM project, how they helped build a cohesive student cohort, and how they helped bring the software development project to a successful completion. This report describes the work in progress, which is limited in scope by the software project duration and the number of participants. 
    more » « less