skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stealthy DGoS Attack under Passive and Active Measurements
As a tool to infer the internal state of a network that cannot be measured directly (e.g., the Internet and all-optical networks), network tomography has been extensively studied under the assumption that the measurements truthfully reflect the end-to-end performance of measurement paths, which makes the resulting solutions vulnerable to manipulated measurements. In this work, we investigate the impact of manipulated measurements via a recently proposed attack model called the \emph{stealthy DeGrading of Service (DGoS) attack}, which aims at maximally degrading path performances without exposing the manipulated links to network tomography. While existing studies on this attack assume that network tomography only measures the paths actively used for data transfer (by passively recording the performance of data packets), our model allows network tomography to measure a larger set of paths, e.g., by sending probes on some paths not carrying data flows. By developing and analyzing the optimal attack strategy, we quantify the maximum damage of such an attack and shed light on possible defenses.  more » « less
Award ID(s):
1813219
PAR ID:
10195980
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Global Communications Conference
ISSN:
2576-6813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network tomography is a powerful tool to monitor the internal state of a closed network that cannot be measured directly, with broad applications in the Internet, overlay networks, and all-optical networks. However, existing network tomography solutions all assume that the measurements are trust-worthy, leaving open how effective they are in an adversarial environment with possibly manipulated measurements. To understand the fundamental limit of network tomography in such a setting, we formulate and analyze a novel type of attack that aims at maximally degrading the performance of targeted paths without being localized by network tomography. By analyzing properties of the optimal attack, we formulate novel combinatorial optimizations to design the optimal attack strategy, which are then linked to well-known problems and approximation algorithms. Our evaluations on real topologies demonstrate the large damage of such attacks, signaling the need of new defenses. 
    more » « less
  2. In this work, we present Phantom, a novel privacy-preserving framework for obfuscating deep neural network (DNN) model deployed in heterogeneous TEE/GPU systems. Phantom employs reinforcement learning to add lightweight obfuscation layers, degrading model performance for adversaries while maintaining functionality for authorized user. To reduce the off-chip data communication between TEE and GPU, we propose a Top-K layer-wise obfuscation sensitivity analysis method. Extensive experiments demonstrate Phantom's superiority over state-of-the-art (SoTA) defense methods against model stealing and fine-tuning attacks across various architectures and datasets. It reduces unauthorized accuracy to near-random guessing (e.g., 10% for CIFAR-10 tasks, 1% for CIFAR-100 tasks) and achieves a 6.99% average attack success rate for model stealing, significantly outperforming SoTA competing methods. System implementation on Intel SGX2 and NVIDIA GPU heterogeneous system achieves 35% end-to-end latency reduction compared with most recent SoTA work. 
    more » « less
  3. The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis. 
    more » « less
  4. The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis. 
    more » « less
  5. The experimental realization of quantum information systems will be difficult due to how sensitive quantum information is to noise. Overcoming this sensitivity is central to designing quantum networks capable of transmitting quantum information reliably over large distances. Moreover, the ability to characterize communication noise in quantum networks is crucial in developing network protocols capable of overcoming the effects of noise in quantum networks. In this context, quantum network tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements. In this work, we propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator. Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately. We build upon previously defined quantum network tomography protocols, as well as provide novel methods for the unique characterization of bit-flip probabilities in stars. We introduce a theoretical benchmark based on the Quantum Fisher Information matrix to compare the efficiency of quantum network protocols. We apply our techniques to the protocols proposed, and perform an initial analysis on the potential benefits of entanglement for Quantum Network Tomography. Furthermore, we simulate the protocols using NetSquid to assess the convergence properties of the estimators obtained for particular parameter regimes. Our findings show that the efficiency of protocols depend on parameter values and motivate the search for adaptive quantum network tomography protocols. 
    more » « less