Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cramèr-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation.
more »
« less
On the Characterization of Quantum Flip Stars with Quantum Network Tomography
The experimental realization of quantum information systems will be difficult due to how sensitive quantum information is to noise. Overcoming this sensitivity is central to designing quantum networks capable of transmitting quantum information reliably over large distances. Moreover, the ability to characterize communication noise in quantum networks is crucial in developing network protocols capable of overcoming the effects of noise in quantum networks. In this context, quantum network tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements. In this work, we propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator. Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately. We build upon previously defined quantum network tomography protocols, as well as provide novel methods for the unique characterization of bit-flip probabilities in stars. We introduce a theoretical benchmark based on the Quantum Fisher Information matrix to compare the efficiency of quantum network protocols. We apply our techniques to the protocols proposed, and perform an initial analysis on the potential benefits of entanglement for Quantum Network Tomography. Furthermore, we simulate the protocols using NetSquid to assess the convergence properties of the estimators obtained for particular parameter regimes. Our findings show that the efficiency of protocols depend on parameter values and motivate the search for adaptive quantum network tomography protocols.
more »
« less
- Award ID(s):
- 1955744
- PAR ID:
- 10562801
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-4323-6
- Page Range / eLocation ID:
- 1260 to 1270
- Format(s):
- Medium: X
- Location:
- Bellevue, WA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, the protocol increases the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.more » « less
-
Entanglement is essential for quantum information processing, but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n−1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from high-performance quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary states in surface codes, with potential extensions to more general quantum low-density parity-check codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing.more » « less
-
Abstract The emergence of quantum sensor networks has presented opportunities for enhancing complex sensing tasks, while simultaneously introducing significant challenges in designing and analyzing quantum sensing protocols due to the intricate nature of entanglement and physical processes. Supervised learning assisted by an entangled sensor network (SLAEN) (Zhuang and Zhang 2019Phys. Rev.X9041023) represents a promising paradigm for automating sensor-network design through variational quantum machine learning. However, the original SLAEN, constrained by the Gaussian nature of quantum circuits, is limited to learning linearly separable data. Leveraging the universal quantum control available in cavity quantum electrodynamics experiments, we propose a generalized SLAEN capable of handling nonlinear data classification tasks. We establish a theoretical framework for physical-layer data classification to underpin our approach. Through training quantum probes and measurements, we uncover a threshold phenomenon in classification error across various tasks—when the energy of probes exceeds a certain threshold, the error drastically diminishes to zero, providing a significant improvement over the Gaussian SLAEN. Despite the non-Gaussian nature of the problem, we offer analytical insights into determining the threshold and residual error in the presence of noise. Our findings carry implications for radio-frequency photonic sensors and microwave dark matter haloscopes.more » « less
-
Quantum sensors are used for precision timekeeping, field sensing, and quantum communication. Comparisons among a distributed network of these sensors are capable of, for example, synchronizing clocks at different locations. The performance of a sensor network is limited by technical challenges as well as the inherent noise associated with the quantum states used to realize the network. For networks with only local entanglement at each node, the noise performance of the network improves at best with square root of the number of nodes. Here, we demonstrate that nonlocal entanglement between network nodes offers better scaling with network size. A shared quantum nondemolition measurement entangles a clock network with up to four nodes. This network provides up to 4.5 dB better precision than one without nonlocal entanglement, and 11.6 dB improvement as compared to a network of sensors operating at the quantum projection noise limit. We demonstrate the generality of the approach with atomic clock and atomic interferometer protocols, in scientific and technologically relevant configurations optimized for intrinsically differential comparisons of sensor outputs.more » « less
An official website of the United States government

