skip to main content


Title: Stimulus Speech Decoding from Human Cortex with Generative Adversarial Network Transfer Learning
Decoding auditory stimulus from neural activity can enable neuroprosthetics and direct communication with the brain. Some recent studies have shown successful speech decoding from intracranial recording using deep learning models. However, scarcity of training data leads to low quality speech reconstruction which prevents a complete brain-computer-interface (BCI) application. In this work, we propose a transfer learning approach with a pre-trained GAN to disentangle representation and generation layers for decoding. We first pre-train a generator to produce spectrograms from a representation space using a large corpus of natural speech data. With a small amount of paired data containing the stimulus speech and corresponding ECoG signals, we then transfer it to a bigger network with an encoder attached before, which maps the neural signal to the representation space. To further improve the network generalization ability, we introduce a Gaussian prior distribution regularizer on the latent representation during the transfer phase. With at most 150 training samples for each tested subject, we achieve a state-of-the-art decoding performance. By visualizing the attention mask embedded in the encoder, we observe brain dynamics that are consistent with findings from previous studies investigating dynamics in the superior temporal gyrus (STG), pre-central gyrus (motor) and inferior frontal gyrus (IFG). Our findings demonstrate a high reconstruction accuracy using deep learning networks together with the potential to elucidate interactions across different brain regions during a cognitive task.  more » « less
Award ID(s):
1912286
NSF-PAR ID:
10196072
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
Page Range / eLocation ID:
390 to 394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jonathan R. Whitlock (Ed.)
    Introduction

    Understanding the neural code has been one of the central aims of neuroscience research for decades. Spikes are commonly referred to as the units of information transfer, but multi-unit activity (MUA) recordings are routinely analyzed in aggregate forms such as binned spike counts, peri-stimulus time histograms, firing rates, or population codes. Various forms of averaging also occur in the brain, from the spatial averaging of spikes within dendritic trees to their temporal averaging through synaptic dynamics. However, how these forms of averaging are related to each other or to the spatial and temporal units of information representation within the neural code has remained poorly understood.

    Materials and methods

    In this work we developed NeuroPixelHD, a symbolic hyperdimensional model of MUA, and used it to decode the spatial location and identity of static images shown ton= 9 mice in the Allen Institute Visual Coding—NeuroPixels dataset from large-scale MUA recordings. We parametrically varied the spatial and temporal resolutions of the MUA data provided to the model, and compared its resulting decoding accuracy.

    Results

    For almost all subjects, we found 125ms temporal resolution to maximize decoding accuracy for both the spatial location of Gabor patches (81 classes for patches presented over a 9×9 grid) as well as the identity of natural images (118 classes corresponding to 118 images) across the whole brain. This optimal temporal resolution nevertheless varied greatly between different regions, followed a sensory-associate hierarchy, and was significantly modulated by the central frequency of theta-band oscillations across different regions. Spatially, the optimal resolution was at either of two mesoscale levels for almost all mice: the area level, where the spiking activity of all neurons within each brain area are combined, and the population level, where neuronal spikes within each area are combined across fast spiking (putatively inhibitory) and regular spiking (putatively excitatory) neurons, respectively. We also observed an expected interplay between optimal spatial and temporal resolutions, whereby increasing the amount of averaging across one dimension (space or time) decreases the amount of averaging that is optimal across the other dimension, and vice versa.

    Discussion

    Our findings corroborate existing empirical practices of spatiotemporal binning and averaging in MUA data analysis, and provide a rigorous computational framework for optimizing the level of such aggregations. Our findings can also synthesize these empirical practices with existing knowledge of the various sources of biological averaging in the brain into a new theory of neural information processing in which theunit of informationvaries dynamically based on neuronal signal and noise correlations across space and time.

     
    more » « less
  2. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  3. It has been postulated that the brain is organized by “metamodal,” sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both “standard” and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain.

    SIGNIFICANCE STATEMENTIt has been proposed that the brain is organized by “metamodal,” sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals “to see” by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.

     
    more » « less
  4. Deep learning algorithms have been moderately successful in diagnoses of diseases by analyzing medical images especially through neuroimaging that is rich in annotated data. Transfer learning methods have demonstrated strong performance in tackling annotated data. It utilizes and transfers knowledge learned from a source domain to target domain even when the dataset is small. There are multiple approaches to transfer learning that result in a range of performance estimates in diagnosis, detection, and classification of clinical problems. Therefore, in this paper, we reviewed transfer learning approaches, their design attributes, and their applications to neuroimaging problems. We reviewed two main literature databases and included the most relevant studies using predefined inclusion criteria. Among 50 reviewed studies, more than half of them are on transfer learning for Alzheimer's disease. Brain mapping and brain tumor detection were second and third most discussed research problems, respectively. The most common source dataset for transfer learning was ImageNet, which is not a neuroimaging dataset. This suggests that the majority of studies preferred pre-trained models instead of training their own model on a neuroimaging dataset. Although, about one third of studies designed their own architecture, most studies used existing Convolutional Neural Network architectures. Magnetic Resonance Imaging was the most common imaging modality. In almost all studies, transfer learning contributed to better performance in diagnosis, classification, segmentation of different neuroimaging diseases and problems, than methods without transfer learning. Among different transfer learning approaches, fine-tuning all convolutional and fully-connected layers approach and freezing convolutional layers and fine-tuning fully-connected layers approach demonstrated superior performance in terms of accuracy. These recent transfer learning approaches not only show great performance but also require less computational resources and time. 
    more » « less
  5. Abstract

    Recent years have seen a surge in interest in building deep learning-based fully data-driven models for weather prediction. Such deep learning models, if trained on observations can mitigate certain biases in current state-of-the-art weather models, some of which stem from inaccurate representation of subgrid-scale processes. However, these data-driven models, being over-parameterized, require a lot of training data which may not be available from reanalysis (observational data) products. Moreover, an accurate, noise-free, initial condition to start forecasting with a data-driven weather model is not available in realistic scenarios. Finally, deterministic data-driven forecasting models suffer from issues with long-term stability and unphysical climate drift, which makes these data-driven models unsuitable for computing climate statistics. Given these challenges, previous studies have tried to pre-train deep learning-based weather forecasting models on a large amount of imperfect long-term climate model simulations and then re-train them on available observational data. In this article, we propose a convolutional variational autoencoder (VAE)-based stochastic data-driven model that is pre-trained on an imperfect climate model simulation from a two-layer quasi-geostrophic flow and re-trained, using transfer learning, on a small number of noisy observations from a perfect simulation. This re-trained model then performs stochastic forecasting with a noisy initial condition sampled from the perfect simulation. We show that our ensemble-based stochastic data-driven model outperforms a baseline deterministic encoder–decoder-based convolutional model in terms of short-term skills, while remaining stable for long-term climate simulations yielding accurate climatology.

     
    more » « less