Synopsis Corticosterone, the main glucocorticoid in birds, is a major mediator of the incredible physiological feat of migration. Corticosterone plays important roles in migration, from preparation to in-flight energy mobilization to refueling, and corticosterone levels often show distinct elevations or depressions during certain stages of the migratory process. Here, we ask whether corticosterone's role in migration shapes its modulation during other life-history stages, as is the case with some other phenotypically flexible traits involved in migration. Specifically, we use a global dataset of corticosterone measures to test whether birds’ migratory status (migrant versus resident) predicts corticosterone levels during breeding. Our results indicate that migratory status predicts neither baseline nor stress-induced corticosterone levels in breeding birds; despite corticosterone’s role in migration, we find no evidence that migratory corticosterone phenotypes carry over to breeding. We encourage future studies to continue to explore corticosterone in migrants versus residents across the annual cycle. Additionally, future efforts should aim to disentangle the possible effects of environmental conditions and migratory status on corticosterone phenotypes; potentially fruitful avenues include focusing on regions where migrants and residents overlap during breeding. Overall, insights from work in this area could demonstrate whether migration shapes traits during other important life stages, identify tradeoffs or limitations associated with the migratory lifestyle, and ultimately shed light on the evolution of flexible traits and migration.
more »
« less
Perceived wintering latitude determines timing of song output in a migratory bird
Migratory bird populations frequently consist of individuals that overwinter variable distances from the breeding site. Seasonal changes in photoperiod, which varies with latitude, underlie seasonal changes in singing frequency in birds. Therefore, migratory populations that consist of individuals that overwinter at different latitudes with large overwintering ranges could experience within-population variation in seasonal production of song. To test the influence of overwintering latitude on intrapopulation variance in song production in the spring, we subjected two groups of Eastern Song Sparrows (Melospiza melodia melodia) from the same partially migratory breeding population to different photoperiodic schedules associated with a 1,300-km difference in overwintering location. One group remained on the natural photoperiodic schedule of the breeding site (resident group) while the other group experienced a nonbreeding photoperiod that mimicked a southern migration in the fall followed by a northern migration back to the breeding site in the spring (migratory group). We compared song output between the two groups in three different stages (nonbreeding, prebreeding, and breeding). Little singing occurred during nonbreeding stage sample dates (20 November, 6 December) for the resident group, and no singing occurred for the migrant group. During the prebreeding stage (27 January, 7 February), significantly more singing occurred in the resident group than in the migrant group. During the breeding stage (21 March, 4 April), after a simulated migration for the migrants, song output was similar in both groups. These results suggest that within-population variation in wintering latitude may contribute to variation in seasonal changes in singing behavior, which may covary with readiness to breed. Studies utilizing confirmed migrants and residents, rather than merely simulated migrants and residents, are also needed to better understand these processes.
more »
« less
- Award ID(s):
- 1856423
- PAR ID:
- 10196178
- Date Published:
- Journal Name:
- Ecology and evolution
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation‐by‐distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation‐by‐distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl.more » « less
-
Abstract Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free‐ranging barn swallows (Hirundo rustica) by studying co‐occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within‐host microbial richness (α‐diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (β‐diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance ofMycoplasmaspp. andCorynebacteriumspp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance ofSalmonellaspp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.more » « less
-
Seasonal migration is highly labile from an evolutionary perspective and known to rapidly evolve in response to selective pressures. However, long‐distance migratory birds rely partially on innate genetic programs and may be constrained in their ability to alter their migratory behavior. We take advantage of recent advances in our ability to genotype historical DNA samples to examine the temporal stability of migratory connections between breeding and nonbreeding populations (i.e. migratory connectivity) and population‐level nonbreeding distributions in the Wilson's warblerCardellina pusilla, a long‐distance migratory songbird. By assigning historical and contemporary samples collected across the nonbreeding range to genetically distinct breeding clusters, we suggest that broad‐scale population‐level nonbreeding distributions within this species have remained largely consistent within Mexico from the mid‐1900s to the present day. These findings support the idea that the nonbreeding distributions of long‐distance migrants may remain stable over long time scales, even in the face of rapid environmental change.more » « less
-
Each fall, millions of monarch butterflies across the U.S. and Canada migrate up to 4,000 km to overwinter in the same cluster of mountaintops in central Mexico. In spring, these migrants mate and remigrate northwards to repopulate their northern breeding territory over 2-4 partially overlapping generations. Because each migrant monarch completes only part of this round trip and does not return to the overwintering site, this navigational task cannot be learned from the prior generation. The number of monarchs completing the journey has dramatically declined in the past decades, coincident with the decreased availability of their milkweed host plant. The U.S., Mexico, and Canada have invested tremendous resources into monarch conservation efforts, including enacting specific policy initiatives, public outreach programs, and habitat protection and restoration projects. The US invested over $11 million between 2015-2017 alone [1]. Developing a tracking technology for monarch can be a key in these efforts, providing, for instance, detailed understanding of habitat use during migratory flight and dependence on weather conditions. Furthermore, it can significantly benefit animal research, and agricultural and environmental science.more » « less
An official website of the United States government

