In order to meet mobile cellular users’ ever-increasing data demands, today’s 4G and 5G wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This paper takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum annealing technology. Armed with these data, we project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over CMOS hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts that with 82.32 μs problem latency and 2.68M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS while reducing power consumption by 41 kW (45% lower) in a Large MIMO base station with 400 MHz bandwidth and 64 antennas, and a 160 kW power reduction (55% lower) using 8.04M qubits in a CRAN setting with three Large MIMO base stations.
more »
« less
Towards Hybrid Classical-Quantum Computation Structures in Wirelessly-Networked Systems
With unprecedented increases in traffic load in today's wireless networks, design challenges shift from the wireless network itself to the computational support behind the wireless network. In this vein, there is new interest in quantum-compute approaches because of their potential to substantially speed up processing, and so improve network throughput. However, quantum hardware that actually exists today is much more susceptible to computational errors than silicon-based hardware, due to the physical phenomena of decoherence and noise. This paper explores the boundary between the two types of computation---classical-quantum hybrid processing for optimization problems in wireless systems---envisioning how wireless can simultaneously leverage the benefit of both approaches. We explore the feasibility of a hybrid system with a real hardware prototype using one of the most advanced experimentally available techniques today, reverse quantum annealing. Preliminary results on a low-latency, large MIMO system envisioned in the 5G New Radio roadmap are encouraging, showing approximately 2--10\times× better performance in terms of processing time than prior published results.
more »
« less
- PAR ID:
- 10196215
- Date Published:
- Journal Name:
- Nineteenth ACM Workshop on Hot Topics in Networks
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Binary Neural Networks (BNNs) are the result of a simplification of network parameters in Artificial Neural Networks (ANNs). The computational complexity of training ANNs increases significantly as the size of the network increases. This complexity can be greatly reduced if the parameters of the network are binarized. Binarization, which is a one bit quantization, can also come with complications including error and information loss. The implementation of BNNs on quantum hardware could potentially provide a computational advantage over its classical counterpart. This is due to the fact that binarized parameters fit nicely to the nature of quantum hardware. Quantum superposition allows the network to be trained more efficiently, without using back propagation techniques, with the application of Grover’s Algorithm for the training process. This paper looks into two BNN designs that utilize only quantum hardware, as opposed to hybrid quantum-classical implementations. It also provides practical implementations for both of them. Looking into their scalability, improvements on the design are proposed to reduce complexity even further.more » « less
-
We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks.more » « less
-
Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts.more » « less
-
Exploiting (near-)optimal MIMO signal processing algorithms in the next generation (NextG) cellular systems holds great promise in achieving significant wireless performance gains in spectral efficiency and device connectivity, to name a few. However, it is extremely difficult to enable optimal processing methods in the systems, since the required computational amount increases exponentially with more users and higher data rates, while available processing time is strictly limited. In this regard, quantum signal processing has been recently identified as a promising potential enabler of the (near-)optimal algorithms in the systems, since quantum computing could dramatically speed up the computation via non-conventional effects based on quantum mechanics. Given existing quantum decoherence and noise on quantum hardware, parallel quantum optimization could accelerate the process even further at the expense of more qubit usage. In this paper, we discuss the parallelization of quantum MIMO processing and investigate a spin-level preprocessing method for relatively finer-grained decomposition that can support more flexible parallel quantum signal processing, compared to the recently reported symbol-level decomposition method. We evaluate the method on the state-of-the-art analog D-Wave Advantage quantum processor.more » « less
An official website of the United States government

