Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a non-cooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based onmore »
-
Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additionalmore »
-
With unprecedented increases in traffic load in today's wireless networks, design challenges shift from the wireless network itself to the computational support behind the wireless network. In this vein, there is new interest in quantum-compute approaches because of their potential to substantially speed up processing, and so improve network throughput. However, quantum hardware that actually exists today is much more susceptible to computational errors than silicon-based hardware, due to the physical phenomena of decoherence and noise. This paper explores the boundary between the two types of computation---classical-quantum hybrid processing for optimization problems in wireless systems---envisioning how wireless can simultaneously leveragemore »
-
User demand for increasing amounts of wireless capacity continues to outpace supply, and so to meet this demand, significant progress has been made in new MIMO wireless physical layer techniques. Higher-performance systems now remain impractical largely only because their algorithms are extremely computationally demanding. For optimal performance, an amount of computation that increases at an exponential rate both with the number of users and with the data rate of each user is often required. The base station's computational capacity is thus becoming one of the key limiting factors on wireless capacity. QuAMax is the first large MIMO cloud-based radio accessmore »