skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trade-offs, Pleiotropy, and Shared Molecular Pathways: A Unified View of Constraints on Adaptation
Synopsis The concept of trade-offs permeates our thinking about adaptive evolution because they are exhibited at every level of biological organization, from molecular and cellular processes to organismal and ecological functions. Trade-offs inevitably arise because different traits do not occur in isolation, but instead are imbedded within complex, integrated systems that make up whole organisms. The genetic and mechanistic underpinning of trade-offs can be found in the pleiotropic nodes that occur in the biological pathways shared between traits. Yet, often trade-offs are only understood as statistical correlations, limiting the ability to evaluate the interplay between how selection and constraint interact during adaptive evolution. Here, we first review the classic paradigms in which physiologists and evolutionary biologists have studied trade-offs and highlight the ways in which network and molecular pathway approaches unify these paradigms. We discuss how these approaches allow researchers to evaluate why trade-offs arise and how selection can act to overcome trait correlations and evolutionary constraints. We argue that understanding how the conserved molecular pathways are shared between different traits and functions provides a conceptual framework for evolutionary biologists, physiologists, and molecular biologists to meaningfully work together toward the goal of understanding why correlations and trade-offs occur between traits. We briefly highlight the melanocortin system and the hormonal control of osmoregulation as two case studies where an understanding of shared molecular pathways reveals why trade-offs occur between seemingly unrelated traits. While we recognize that applying such approaches poses challenges and limitations particularly in the context of natural populations, we advocate for the view that focusing on the biological pathways responsible for trade-offs provides a unified conceptual context accessible to a broad range of integrative biologists.  more » « less
Award ID(s):
1927470
PAR ID:
10196258
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
60
Issue:
2
ISSN:
1540-7063
Page Range / eLocation ID:
332 to 347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Immune systems pose fascinating puzzles for evolutionary biologists. They feature some of the most polymorphic genes and reflect the strongest natural selection known. Evolution of immune systems plays a key role in host–parasite interactions, speciation, and eco-evolutionary dynamics that have community- and ecosystem-wide consequences. Conversely, evolutionary perspectives enrich our understanding of immunology, revealing macroevolutionary origins of key immune traits, their function in wild populations as opposed to sterile lab settings, and trade-offs that constrain immune adaptation. Here, we review key themes in the fast-growing interdisciplinary field of evolutionary immunology, focusing on multicellular animals. We describe macroevolution of immune functions, evidence of contemporary selection on immune genes, and the underlying theory seeking to explain this selection at multiple biological scales. We identify major open questions and opportunities in the field today. Foremost among these is the challenge of accurately and appropriately measuring relevant immune traits in wild and nonmodel organisms, which is necessary to understand their evolution in natural settings. A second challenge is to describe how diverse communities of symbionts impose selection on the highly multivariate and pleiotropic immune system. 
    more » « less
  2. null (Ed.)
    Understanding how and why behavioral traits diversify during the course of evolution is a longstanding goal of organismal biologists. Historically, this topic is examined from an ecological perspective, where behavioral evolution is thought to occur in response to selection pressures that arise through different social and environmental factors. Yet organismal physiology and biomechanics also play a role in this process by defining the types of behavioral traits that are more or less likely to arise. Our paper explores the interplay between ecological, physiological, and mechanical factors that shape the evolution of an elaborate display in woodpeckers called the drum. Individuals produce this behavior by rapidly hammering their bill on trees in their habitat, and it serves as an aggressive signal during territorial encounters. We describe how different components of the display—namely, speed (bill strikes/beats sec –1 ), length (total number of beats), and rhythm—differentially evolve likely in response to sexual selection by male-male competition, whereas other components of the display appear more evolutionarily static, possibly due to morphological or physiological constraints. We synthesize research related to principles of avian muscle physiology and ecology to guide inferences about the biomechanical basis of woodpecker drumming. Our aim is to introduce the woodpecker as an ideal study system to study the physiological basis of behavioral evolution and how it relates to selection born through different ecological factors. 
    more » « less
  3. Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci. 
    more » « less
  4. Humans have long known how to co-opt evolutionary processes for their own benefit. Carefully choosing which individuals to breed so that beneficial traits would take hold, they have domesticated dogs, wheat, cows and many other species to fulfil their needs. Biologists have recently refined these ‘artificial selection’ approaches to focus on microorganisms. The hope is to obtain microbes equipped with desirable features, such as the ability to degrade plastic or to produce valuable molecules. However, existing ways of using artificial selection on microbes are limited and sometimes not effective. Computer scientists have also harnessed evolutionary principles for their own purposes, developing highly effective artificial selection protocols that are used to find solutions to challenging computational problems. Yet because of limited communication between the two fields, sophisticated selection protocols honed over decades in evolutionary computing have yet to be evaluated for use in biological populations. In their work, Lalejini et al. compared popular artificial selection protocols developed for either evolutionary computing or work with microorganisms. Two computing selection methods showed promise for improving directed evolution in the laboratory. Crucially, these selection protocols differed from conventionally used methods by selecting for both diversity and performance, rather than performance alone. These promising approaches are now being tested in the laboratory, with potentially far-reaching benefits for medical, biotech, and agricultural applications. While evolutionary computing owes its origins to our understanding of biological processes, it has much to offer in return to help us harness those same mechanisms. The results by Lalejini et al. help to bridge the gap between computational and biological communities who could both benefit from increased collaboration. 
    more » « less
  5. Abstract The evolutionary transition to multicellularity requires shifting the primary unit of selection from cells to multicellular collectives. How this occurs in aggregative organisms remains poorly understood. Clonal development provides a direct path to multicellular adaptation through genetic identity between cells, but aggregative organisms face a constraint: selection on collective-level traits cannot drive adaptation without positive genetic assortment. We leveraged experimental evolution of flocculatingSaccharomyces cerevisiaeto examine the evolution and role of genetic assortment in multicellular adaptation. After 840 generations of selection for rapid settling, 13 of 19 lineages evolved increased positive assortment relative to their ancestor. However, assortment provided no competitive advantage during settling selection, suggesting it arose as an indirect effect of selection on cell-level traits rather than through direct selection on collective-level properties. Genetic reconstruction experiments and protein structure modeling revealed two distinct pathways to assortment: kin recognition mediated by mutations in theFLO1adhesion gene and generally enhanced cellular adhesion that improved flocculation efficiency independent of partner genotype. The evolution of assortment without immediate adaptive benefit suggests that key innovations enabling multicellular adaptation may arise indirectly through cell-level selection. Our results demonstrate fundamental constraints on aggregative multicellularity and help explain why aggregative lineages have remained simple. 
    more » « less