The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning.
more »
« less
Indoor and Outdoor Concentrations of Particulate Matter in an Airport Terminal Building: A Pilot Study at Soekarno-Hatta International Airport in Indonesia
The air quality inside airport terminal buildings is a lesser studied area compared to ambient air quality at the airport. The contribution of outdoor particulate matter (PM), aircraft traffic, and passenger traffic to indoor PM concentration is not well understood. Using the largest airport in Southeast Asia as the study site (extends 17.9 square kilometers), the objective of this paper is to conduct a preliminary analysis to examine the mass concentrations of fine particles, including PM1 and PM2.5, and coarse particles PM2.5–10 inside a four-story terminal building spanning 400,000 square meters in Jakarta, Indonesia. The results showed the indoor/outdoor (I/O) ratio of 0.42 for PM1 with 15-min time lag and 0.33 for PM2.5 with 30-min time lag. The aircraft traffic appeared to have a significant impact on indoor PM1 and PM2.5, whereas the passenger traffic showed an influence on indoor PM2.5–10.
more »
« less
- Award ID(s):
- 1852995
- PAR ID:
- 10196289
- Date Published:
- Journal Name:
- Buildings
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2075-5309
- Page Range / eLocation ID:
- 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grassian, Vicki (Ed.)Nanocluster aerosol (NCA: particles in the size range of 1–3 nm) are a critically important, yet understudied, class of atmospheric aerosol particles. NCA efficiently deposit in the human respiratory system and can translocate to vital organs. Due to their high surface area-to-mass ratios, NCA are associated with a heightened propensity for bioactivity and toxicity. Despite the human health relevance of NCA, little is known regarding the prevalence of NCA in indoor environments where people spend the majority of their time. In this study, we quantify the formation and transformation of indoor atmospheric NCA down to 1 nm via high-resolution online nanoparticle measurements during propane gas cooking in a residential building. We observed a substantial pool of sub-1.5 nm NCA in the indoor atmosphere during cooking periods, with aerosol number concentrations often dominated by the newly formed NCA. Indoor atmospheric NCA emission factors can reach up to ~10^16 NCA/kg-fuel during propane gas cooking and can exceed those for vehicles with gasoline and diesel engines. Such high emissions of combustion-derived indoor NCA can result in substantial NCA respiratory exposures and dose rates for children and adults, significantly exceeding that for outdoor traffic-associated NCA. Combustion-derived indoor NCA undergo unique size-dependent physical transformations, strongly influenced by particle coagulation and condensation of low-volatility cooking vapors. We show that indoor atmospheric NCA need to be measured directly and cannot be predicted using conventional indoor air pollution markers such as PM2.5 mass concentrations and NOx (NO + NO2) mixing ratios.more » « less
-
In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 μg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 μg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings.more » « less
-
Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange.more » « less
-
Wildfire smoke, particularly particulate matter less than 2.5 microns (PM2.5), represents a major source of air pollution and a growing public health problem. PM2.5 is a general term used for any particulate < 2.5 µm; however, a wide variety of particulates with different physical and chemical properties can be formed in this size range. The health impacts of PMs are controlled by their size. Unlike larger particulates, which only enter the respiratory tract, fine PMs (<0.1 µm) can also enter the bloodstream and even pass through the blood-brain barrier. The health risks due to exposure to PM can be different for various PM phases with different physical properties, which is poorly understood. We collected wildfire smoke from more than 10 major wildfires in the Western US using active air samplers that separate particles in different size ranges (>2.5 µm - <0.25 µm). Particles were collected on filters, which are pre-weighted and loaded into the impactor. The filters were weighted and compared with the pre-weight values to calculate the mass of particles collected at each size range. Our results revealed that for all the smoke from varied wildfires, the mass of particles increased with decreasing size, with the majority (more than 50%) being less than 0.25 μm. In addition, the PM2.5 total concentration was recorded using an air quality monitor and compared to the particle size distribution in different smoke samples. The results showed that as the overall concentration of wildfire smoke decreases, the fraction of particles smaller than 0.250 microns increases even more. This suggests that these ultrafine particles not only make up the majority of PM in wildfire smoke but are also more persistent in the atmosphere, even when the total PM concentration is low. Our findings highlight the magnitude of health risks posed by PM and underscore the urgent need for effective solutions to reduce respiratory exposure in affected communities.more » « less
An official website of the United States government

