skip to main content


Title: Residual impacts of a wildland urban interface fire on urban particulate matter and dust: a study from the Marshall Fire
The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning.  more » « less
Award ID(s):
2218009
NSF-PAR ID:
10420409
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Air Quality, Atmosphere & Health
ISSN:
1873-9318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Thomas Fire began on December 4, 2017 and burned 281,893 acres over a 40‐day period in Ventura and Santa Barbara Counties, making it one of California's most destructive wildfires to date. A major rainstorm then caused a flash flood event, which led to the containment of the fire. Both airborne ash from the fire and the runoff from the flash flood entered into the Santa Barbara Basin (SBB). Here, we present the results from aerosol, river, and seawater studies of black carbon and metal delivery to the SBB associated with the fire and subsequent flash flood. On day 11 of the Thomas Fire, aerosols sampled under the smoke plume were associated with high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m3, 1.05 μg/m3, and 14.93 μg/m3, respectively) and aerosol metal concentrations were consistent with a forest fire signature. Metal concentrations in SBB surface seawater were higher closer to the coastal perimeter of the fire (including 2.22 nM Fe) than further off the coast, suggesting a dependence on continental proximity rather than fire inputs. On days 37–40 of the fire, before, during, and after the flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge allowing us to estimate the input of fire products into the coastal ocean. We estimated rapid aerosol delivery during the fire event to be the larger share of fire‐derived metal transport compared to runoff from the Ventura River during the flood event.

     
    more » « less
  2. null (Ed.)
    Abstract. In the aqueous phase, fine particulate matter can form reactive species (RS)that influence the aging, properties, and health effects of atmosphericaerosols. In this study, we explore the RS yields of aerosol samples froma remote forest (Hyytiälä, Finland) and polluted urban locations(Mainz, Germany; Beijing, China), and we relate the RS yields to differentchemical constituents and reaction mechanisms. Ultra-high-resolution massspectrometry was used to characterize organic aerosol composition, electronparamagnetic resonance (EPR) spectroscopy with a spin-trapping technique wasapplied to determine the concentrations of ⚫OH,O2⚫-, and carbon- or oxygen-centered organic radicals, anda fluorometric assay was used to quantify H2O2. The aqueousH2O2-forming potential per mass unit of ambient PM2.5(particle diameter < 2.5 µm) was roughly the same for allinvestigated samples, whereas the mass-specific yields of radicals werelower for sampling sites with higher concentrations of PM2.5. Theabundances of water-soluble transition metals and aromatics in ambientPM2.5 were positively correlated with the relative fraction of⚫OH and negatively correlated with the relative fraction ofcarbon-centered radicals. In contrast, highly oxygenated organic molecules(HOM) were positively correlated with the relative fraction ofcarbon-centered radicals and negatively correlated with the relativefraction of ⚫OH. Moreover, we found that the relative fractionsof different types of radicals formed by ambient PM2.5 were comparableto surrogate mixtures comprising transition metal ions, organichydroperoxide, H2O2, and humic or fulvic acids. The interplay oftransition metal ions (e.g., iron and copper ions), highly oxidized organicmolecules (e.g., hydroperoxides), and complexing or scavenging agents (e.g.,humic or fulvic acids) leads to nonlinear concentration dependencies inaqueous-phase RS production. A strong dependence on chemical compositionwas also observed for the aqueous-phase radical yields oflaboratory-generated secondary organic aerosols (SOA) from precursormixtures of naphthalene and β-pinene. Our findings show how thecomposition of PM2.5 can influence the amount and nature ofaqueous-phase RS, which may explain differences in the chemical reactivityand health effects of particulate matter in clean and polluted air. 
    more » « less
  3. Organosulfates (OSs) are the most abundant class of organosulfur compounds (OrgS) in atmospheric fine particulate matter (PM2.5). Globally, isoprene‐derived OSs (iOSs) are the most abundantly reported OSs. The methyltetrol sulfates (MTSs), formed from multiphase chemical reactions of isoprene‐derived epoxidiols (IEPOX) with acidic sulfate aerosols, are the predominant iOSs. A recent study revealed that the heterogeneous hydroxyl radical (•OH) oxidation of fine particulate MTSs yields several highly oxygenated and functionalized OSs previously attributed to non‐IEPOX pathways. By using hydrophilic interaction liquid chromatography interfaced to electrospray ionization high‐resolution quadrupole time‐of‐flight mass spectrometry (HILIC/ESI‐HRQTOFMS), iOSs were quantitatively characterized in PM2.5 collected from 20 ground sites within the Interagency Monitoring of Protected Visual Environments (IMPROVE) network during the 2016 summer and winter seasons. Total water‐soluble sulfur (TWS‐S) and sulfur in the form of inorganic sulfate (Sinorg) were determined by inductively coupled plasmaoptical emission spectroscopy (ICP‐OES) and ion chromatography (IC), respectively. The difference between TWS‐S and Sinorg was used as an upper bound estimate of water‐soluble OrgS concentration. Significantly higher OrgS concentrations, coincident with elevated iOS concentrations, were observed only in summer. On average, iOSs (130 ± 60, up to 240 ng m‐3) explained 29% (± 7%) of OrgS and 5% (± 2%) of organic matter (OM = 1.8*OC) in summertime PM2.5 collected from the eastern U.S. For the western U.S., iOSs (11 ± 6 ng m‐3) account for 6% (± 5%) of OrgS and 0.7% (± 0.4%) of OM. This study provides critical insights into the abundance, prevalence, spatial variability of iOSs across the U.S. 
    more » « less
  4. null (Ed.)
    This study characterizes the impact of the Chesapeake Bay and associated meteorological phenomena on aerosol chemistry during the second Ozone Water-Land Environmental Transition Study (OWLETS-2) field campaign during summer 2018. Measurements of inorganic PM2.5 composition, gas-phase ammonia (NH3), and an array of meteorological parameters were undertaken at Hart-Miller Island (HMI), a land-water transition site just east of downtown Baltimore on the Chesapeake Bay. The observations at HMI were characterized by abnormally high NH3 concentrations (maximum of 19.3 μg m-3, average of 3.83 μg m-3), which were more than a factor of three higher than NH3 levels measured at the closest Atmospheric Ammonia Network (AMoN) site (approximately 45 km away). While sulfate concentrations at HMI agreed quite well with those measured at a regulatory monitoring station 45 km away, aerosol ammonium and nitrate concentrations were significantly higher, due to the ammonia-rich conditions that resulted from the elevated NH3. The high NH3 concentrations were largely due to regional agricultural emissions, including dairy farms in southeastern Pennsylvania and poultry operations in the Delmarva Peninsula (Delaware-Maryland-Virginia). Reduced NH3 deposition during transport over the Chesapeake Bay likely contributed to enhanced concentrations at HMI compared to the more inland AMoN site. Several peak NH3 events were recorded, including the maximum NH3 observed during OWLETS-2, that appear to originate from a cluster of industrial sources near downtown Baltimore. Such events were all associated with nighttime emissions and advection to HMI under low 15 wind speeds (< 1 m s-1) and stable atmospheric conditions. Our results demonstrate the importance of industrial sources, including several that are not represented in the emissions inventory, on urban air quality. Together with our companion paper, which examines aerosol liquid water and pH during OWLETS-2, we highlight unique processes affecting urban air quality of coastal cities that are distinct from continental locations. 
    more » « less
  5. null (Ed.)
    Urban air pollution poses a major threat to human health. Understanding where and when urban air pollutant concentrations peak is essential for effective air quality management and sustainable urban development. To this end, we implement a mobile monitoring methodology to determine the spatiotemporal distribution of particulate matter (PM) and black carbon (BC) throughout Philadelphia, Pennsylvania and use hot spot analysis and heatmaps to determine times and locations where pollutant concentrations are highest. Over the course of 12 days between June 27 and July 29, 2019, we measured air pollution concentrations continuously across two 150 mile (241.4 km) long routes. Average daily mean concentrations were 11.55 ± 5.34 μg/m 3 (PM 1 ), 13.48 ± 5.59 μg/m 3 (PM 2.5 ), 16.13 ± 5.80 μg/m 3 (PM 10 ), and 1.56 ± 0.39 μg/m 3 (BC). We find that fine PM size fractions (PM 2.5 ) constitute approximately 84% of PM 10 and that BC comprises 11.6% of observed PM 2.5 . Air pollution hotspots across three size fractions of PM (PM 1 , PM 2.5 , and PM 10 ) and BC had similar distributions throughout Philadelphia, but were most prevalent in the North Delaware, River Wards, and North planning districts. A plurality of detected hotspots found throughout the data collection period (30.19%) occurred between the hours of 8:00 AM–9:00 AM. 
    more » « less