skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: PAC-Bayes control: learning policies that provably generalize to novel environments

Our goal is to learn control policies for robots that provably generalize well to novel environments given a dataset of example environments. The key technical idea behind our approach is to leverage tools from generalization theory in machine learning by exploiting a precise analogy (which we present in the form of a reduction) between generalization of control policies to novel environments and generalization of hypotheses in the supervised learning setting. In particular, we utilize the probably approximately correct (PAC)-Bayes framework, which allows us to obtain upper bounds that hold with high probability on the expected cost of (stochastic) control policies across novel environments. We propose policy learning algorithms that explicitly seek to minimize this upper bound. The corresponding optimization problem can be solved using convex optimization (relative entropy programming in particular) in the setting where we are optimizing over a finite policy space. In the more general setting of continuously parameterized policies (e.g., neural network policies), we minimize this upper bound using stochastic gradient descent. We present simulated results of our approach applied to learning (1) reactive obstacle avoidance policies and (2) neural network-based grasping policies. We also present hardware results for the Parrot Swing drone navigating through different obstacle environments. Our examples demonstrate the potential of our approach to provide strong generalization guarantees for robotic systems with continuous state and action spaces, complicated (e.g., nonlinear) dynamics, rich sensory inputs (e.g., depth images), and neural network-based policies.

 
more » « less
NSF-PAR ID:
10196346
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The International Journal of Robotics Research
Volume:
40
Issue:
2-3
ISSN:
0278-3649
Page Range / eLocation ID:
p. 574-593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function approximation, we consider a family of Markov games where the reward function and transition kernel possess a linear structure. Both the offline and online settings of the problems are considered. In the offline setting, we control both players and aim to find the Nash equilibrium by minimizing the duality gap. In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret. For both settings, we propose an optimistic variant of the least-squares minimax value iteration algorithm. We show that our algorithm is computationally efficient and provably achieves an [Formula: see text] upper bound on the duality gap and regret, where d is the linear dimension, H the horizon and T the total number of timesteps. Our results do not require additional assumptions on the sampling model. Our setting requires overcoming several new challenges that are absent in Markov decision processes or turn-based Markov games. In particular, to achieve optimism with simultaneous moves, we construct both upper and lower confidence bounds of the value function, and then compute the optimistic policy by solving a general-sum matrix game with these bounds as the payoff matrices. As finding the Nash equilibrium of a general-sum game is computationally hard, our algorithm instead solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our best knowledge, such a CCE-based scheme for optimism has not appeared in the literature and might be of interest in its own right. 
    more » « less
  2. We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult than existing bandit learning algorithms. Second, the pricing function [Formula: see text] is of infinite dimension, and approaching it is much more challenging than approaching a finite number of parameters as seen in existing researches. The demand-price relationship is estimated based on upper confidence bound, but the confidence interval cannot be explicitly calculated due to the complexity of the DP recursion. Finally, because of the multiperiod nature of [Formula: see text] policies the actual distribution of the randomness in demand plays an important role in determining the optimal pricing strategy [Formula: see text], which is unknown to the learner a priori. In this paper, the demand randomness is approximated by an empirical distribution constructed using dependent samples, and a novel Wasserstein metric-based argument is employed to prove convergence of the empirical distribution. This paper was accepted by J. George Shanthikumar, big data analytics. 
    more » « less
  3. Wallach, H (Ed.)
    We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural policies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge-a meta-algorithm called PROPEL-is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies. 
    more » « less
  4. We present a sampling-based framework for feed- back motion planning of legged robots. Our framework is based on switching between limit cycles at a fixed instance of motion, the Poincare ́section(e.g.,apex or touchdown),by finding overlaps between the regions of attraction (ROA) of two limit cycles. First, we assume a candidate orbital Lyapunov function (OLF) and define a ROA at the Poincare ́ section. Next, we solve multiple trajectory optimization problems, one for each sampled initial condition on the ROA to minimize an energy metric and subject to the exponential convergence of the OLF between two steps. The result is a table of control actions and the corresponding initial conditions at the Poincare ́ section. Then we develop a control policy for each control action as a function of the initial condition using deep learning neural networks. The control policy is validated by testing on initial conditions sampled on ROA of randomly chosen limit cycles. Finally, the rapidly-exploring random tree algorithm is adopted to plan transitions between the limit cycles using the ROAs. The approach is demonstrated on a hopper model to achieve velocity and height transitions between steps. 
    more » « less
  5. Due to a growing interest in deep learning applications [5], compute-intensive and long-running (hours to days) training jobs have become a significant component of datacenter workloads. A large fraction of these jobs is often exploratory, with the goal of determining the best model structure (e.g., the number of layers and channels in a convolutional neural network), hyperparameters (e.g., the learning rate), and data augmentation strategies for the target application. Notably, training jobs are often terminated early if their learning metrics (e.g., training and validation accuracy) are not converging, with only a few completing successfully. For this motivating application, we consider the problem of scheduling a set of jobs that can be terminated at predetermined checkpoints with known probabilities estimated from historical data. We prove that, in order to minimize the time to complete the first K successful jobs on a single server, optimal scheduling does not require preemption (even when preemption overhead is negligible) and provide an optimal policy; advantages of this policy are quantified through simulation. Related Work. While job scheduling has been investigated extensively in many scenarios (see [6] and [2] for a survey of recent result), most policies require that the cost of waiting times of each job be known at scheduling time; in contrast, in our setting the scheduler does not know which job will be the K-th successful job, and sojourn times of subsequent jobs do not contribute to the target metric. For example, [4, 3] minimize makespan (i.e., the time to complete all jobs) for known execution times and waiting time costs; similarly, Gittins index [1] and SR rank [7] minimize expected sojourn time of all jobs, i.e., both successfully completed jobs and jobs terminated early. Unfortunately, scheduling policies not distinguishing between these two types of jobs may favor jobs where the next stage is short and leads to early termination with high probability, which is an undesirable outcome in our applications of interest. 
    more » « less