Unbiased photoelectrochemical hydrogen production with high efficiency and durability is highly desired for solar energy storage. Here, we report a microbial photoelectrochemical (MPEC) system that demonstrated superior performance when equipped with bioanodes and black silicon photocathode with a unique “Swiss-cheese” interface. The MPEC utilizes the chemical energy embedded in wastewater organics to boost solar H 2 production, which overcomes barriers on anode H 2 O oxidation. Without any bias, the MPEC generates a record photocurrent (up to 23 mA cm −2 ) and retains prolonged stability for over 90 hours with high Faradaic efficiency (96–99%). The calculated turnover number for MoS x catalyst during a 90 h period is 495 471 with an average frequency of 1.53 s −1 . The system replaced pure water on the anode with actual wastewater and achieved waste organic removal up to 16 kg COD m −2 photocathode per day. Cost credits from concurrent wastewater treatment and low-cost design make photoelectrochemical H 2 production practical for the first time.
more »
« less
Electrical decoupling of microbial electrochemical reactions enables spontaneous H 2 evolution
Hydrogen evolution is not a spontaneous reaction, so current electrochemical H 2 systems either require an external power supply or use complex photocathodes. We present in this study that by using electrical decoupling, H 2 can be produced spontaneously from wastewater. A power management system (PMS) circuit was deployed to decouple bioanode organic oxidation from abiotic cathode proton reduction in the same electrolyte. The special PMS consisted of a boost converter and an electromagnetic transformer, which harvested energy from the anode followed by voltage magnification from 0.35 V to 2.2–2.5 V, enabling in situ H 2 evolution for over 96 h without consuming any external energy. This proof-of-concept demonstrated a cathode faradaic efficiency of 91.3% and a maximum overall H 2 conversion efficiency of 28.9%. This approach allows true self-sustaining wastewater to H 2 evolution, and the system performance can be improved via the PMS and reactor optimization.
more »
« less
- Award ID(s):
- 1834724
- PAR ID:
- 10196354
- Date Published:
- Journal Name:
- Energy & Environmental Science
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 1754-5692
- Page Range / eLocation ID:
- 495 to 502
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sn‐based materials are identified as promising catalysts for the CO2electroreduction (CO2RR) to formate (HCOO−). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO2nanosheet with simultaneous N dopants and oxygen vacancies (VO‐rich N‐SnO2NS) for promoting CO2conversion to HCOO−is reported. Due to the likely synergistic effect of N dopant andVO, theVO‐rich N‐SnO2NS exhibits high catalytic selectivity featured by an HCOO−Faradaic efficiency (FE) of 83% at−0.9 V and an FE of>90% for all C1 products (HCOO−and CO) at a wide potential range from −0.9 to−1.2 V. Low coordination Sn–N moieties are the active sites with optimal electronic and geometric structures regulated byVOand N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on theVO‐rich N‐SnO2NS, thus enhancing HCOO−selectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn‐CO2cell and a solar‐powered electrolysis process successfully demonstrated the efficient HCOO−generation through CO2conversion and storage.more » « less
-
Abstract The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V.more » « less
-
Abstract A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments.more » « less
-
Abstract A glut of dinitrogen‐derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large‐scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3holds promise in mitigating these environmental impacts and reducing reliance on the energy‐intensive Haber–Bosch process. Herein, we report a high‐performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH−KOH−H2O, for low‐cost NH3electrosynthesis. At 3,000 mA/cm2, the device with a Fe−Cu−Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno‐economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe−Cu−Ni vs. $48.53 for Ni foam per kmol‐NH3). The NaOH−KOH−H2O electrolyte together with the Fe−Cu−Ni ternary catalyst can enable the high‐throughput nitrate‐to‐ammonia applications for affordable and scalable real‐world wastewater treatments.more » « less
An official website of the United States government

