skip to main content


Title: Simulation of Vacuum Ultraviolet Absorption Spectra: Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Hydrocarbon Class Compounds
The advent of a new vacuum ultraviolet (VUV) spectroscopic absorption detector for gas chromatography has enabled applications in many areas. Theoretical simulations of VUV spectra using computational chemistry can aid the new technique in situations where experimental spectra are unavailable. In this study, VUV spectral simulations of paraffin, isoparaffin, olefin, naphthene, and aromatic (PIONA) compounds using time-dependent density functional theory (TDDFT) methods were investigated. Important factors for the simulations, such as functionals/basis sets and formalism of oscillator strength calculations, were examined and parameters for future PIONA compound simulations were obtained by fitting computational results to experimental spectra. The simulations produced satisfactory correlations between experimental observations and theoretical calculations, and enabled potential analysis applications for complex higher distillate fuels, such as diesel fuel. Further improvement of the methods was proposed.  more » « less
Award ID(s):
1634448
NSF-PAR ID:
10196502
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Spectroscopy
Volume:
74
Issue:
1
ISSN:
0003-7028
Page Range / eLocation ID:
72 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium( iii )-tris-(acetylacetonato) complex, Ru(acac) 3 . Enantiomerically pure Δ- or Λ-Ru(acac) 3 , characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac) 3 , which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localization and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac) 3 , a system exhibiting D 3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality. 
    more » « less
  2. Organic chromophores initiate much of daytime aqueous phase chemistry in the environment. Thus, studying the absorption spectra of commonly used organic photosensitizers is paramount to fully understand their relevance in environmental processes. In this work, we combined UV-Vis spectroscopy, 1 H-NMR spectroscopy, quantum chemical calculations, and molecular dynamics simulations to investigate the absorption spectra of 4-benzoyl benzoic acid (4BBA), a widely used photosensitizer and a common proxy of environmentally relevant chromophores. Solutions of 4BBA at different pH values show that protonated and deprotonated species have an effect on its absorbance spectra. Theoretical calculations of these species in water clusters provide physical and chemical insights into the spectra. Quantum chemical calculations were conducted to analyze the UV-Vis absorbance spectra of 4BBA species using various cluster sizes, such as C 6 H 5 COC 6 H 4 COOH·(H 2 O) n , where n = 8 for relatively small clusters and n = 30 for larger clusters. While relatively small clusters have been successfully used for smaller chromophores, our results indicate that simulations of protonated species of 4BBA require relatively larger clusters of n = 30. A comparison between the experimental and theoretical results shows good agreement in the pH-dependent spectral shift between the hydrated cluster model and the experimental data. Overall, the theoretical and empirical results indicate that the experimental optical spectra of aqueous phase 4BBA can be represented by the acid–base equilibrium of the keto-forms, with a spectroscopically measured p K a of 3.41 ± 0.04. The results summarized here contribute to a molecular-level understanding of solvated organic molecules through calculations restricted to cluster models, and thereby, broader insight into environmentally relevant chromophores. 
    more » « less
  3. Fentanyl and fentanyl analogs are the main cause of recent overdose deaths in the United States. The presence of fentanyl analogs in illicit drugs makes it difficult to estimate their potencies. This makes the detection and differentiation of fentanyl analogs critically significant. Surface-enhanced Raman spectroscopy (SERS) can differentiate structurally similar fentanyl analogs by yielding spectroscopic fingerprints for the detected molecules. In previous years, five fentanyl analogs, carfentanil, furanyl fentanyl, acetyl fentanyl, 4-fluoroisobutyryl fentanyl (4-FIBF), and cyclopropyl fentanyl (CPrF), gained popularity and were found in 76.4% of the fentanyl analogs trafficked. In this study, we focused on 4-FIBF, CPrF, and structurally similar fentanyl analogs. We developed methods to differentiate these fentanyl analogs using theoretical and experimental methods. To do this, a set of fentanyl analogs were examined using density functional theory (DFT) calculations. The DFT results obtained in this project permitted the assignment of spectral bands. These results were then compared with normal Raman and SERS techniques. Structurally similar fentanyl analogs show important differences in their spectra, and they have been visually differentiated from each other both theoretically and experimentally. Additional results using principal component analysis and soft independent modeling of class analogy show they can be distinguished using this technique. The limit of detection values for FIBF and CPrF were determined to be 0.35 ng/mL and 4.4 ng/mL, respectively, using SERS. Experimental results obtained in this project can be readily implemented in field applications and smaller laboratories, where inexpensive portable Raman spectrometers are often present and used in drug analysis.

     
    more » « less
  4. Abstract. A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide–chemical ionization massspectrometers (I−-CIMS). The VUV-IS utilizes a compact krypton lamp that emits light at two wavelengths corresponding to energies of∼10.030 and 10.641 eV. The VUV light photoionizes either methyl iodide (ionization potential, IP = 9.54 ± 0.02 eV)or benzene (IP = 9.24378 ± 0.00007 eV) to form cations and photoelectrons. The electrons react with methyl iodide to formI−, which serves as the reagent ion for the CIMS. The VUV-IS is characterized by measuring the sensitivity of a quadrupole CIMS (Q-CIMS) toformic acid, molecular chlorine, and nitryl chloride under a variety of flow and pressure conditions. The sensitivity of the Q-CIMS, with theVUV-IS, reached up to ∼700 Hz pptv−1, with detection limits of less than 1 pptv for a 1 min integration period. Thereliability of the Q-CIMS with a VUV-IS is demonstrated with data from a month-long ground-based field campaign. The VUV-IS is further tested byoperation on a high-resolution time-of-flight CIMS (TOF-CIMS). Sensitivities greater than 25 Hz pptv−1 were obtained for formic acid andmolecular chlorine, which were similar to that obtained with a radioactive source. In addition, the mass spectra from sampling ambient air wascleaner with the VUV-IS on the TOF-CIMS compared to measurements using a radioactive source. These results demonstrate that the VUV lamp is a viablesubstitute for radioactive ion sources on I−-CIMS systems for most applications. In addition, initial tests demonstrate that the VUV-IS canbe extended to other reagent ions by the use of VUV absorbers with low IPs to serve as a source of photoelectrons for high IP electron attachers,such as SF6-. 
    more » « less
  5. Abstract

    Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design.

    This article is categorized under:

    Structure and Mechanism > Computational Biochemistry and Biophysics

    Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods

    Molecular and Statistical Mechanics > Free Energy Methods

     
    more » « less