skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review
Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.  more » « less
Award ID(s):
1646420
PAR ID:
10196533
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
10
ISSN:
1424-8220
Page Range / eLocation ID:
2778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep learning (DL) is one of the fastest-growing topics in materials data science, with rapidly emerging applications spanning atomistic, image-based, spectral, and textual data modalities. DL allows analysis of unstructured data and automated identification of features. The recent development of large materials databases has fueled the application of DL methods in atomistic prediction in particular. In contrast, advances in image and spectral data have largely leveraged synthetic data enabled by high-quality forward models as well as by generative unsupervised DL methods. In this article, we present a high-level overview of deep learning methods followed by a detailed discussion of recent developments of deep learning in atomistic simulation, materials imaging, spectral analysis, and natural language processing. For each modality we discuss applications involving both theoretical and experimental data, typical modeling approaches with their strengths and limitations, and relevant publicly available software and datasets. We conclude the review with a discussion of recent cross-cutting work related to uncertainty quantification in this field and a brief perspective on limitations, challenges, and potential growth areas for DL methods in materials science. 
    more » « less
  2. With recent advances in Deep Learning (DL) models, the healthcare domain has seen an increased adoption of neural networks for clinical diagnosis, monitoring, and prediction. Deep Learning models have been developed for various tasks using 1D (one-dimensional) time-series signals. Time-series healthcare data, typically collected through sensors, have specific structures and characteristics such as frequency and amplitude. The nature of these features, including varying sampling rates that depend on the instruments used for sensing, poses challenges in handling them. Electrocardiograms (ECG), a class of 1D time-series signals representing the electrical activity of the heart, have been used to develop heart condition classification decision support systems. The sampling rate of these signals, influenced by different ECG instruments as well as their calibrations, can greatly impact the learning functions of deep learning models and subsequently, their decision outcomes. This hinders the development and deployment of generalized, DL-based ECG classifiers that can work with data from a variety of ECG instruments, particularly when the sampling rate of the training data remains unknown to users. Moreover, DL models are not designed to recognize the sampling rate of the testing data on which they are being deployed, further complicating their effective application across diverse clinical settings. In this study, we investigated the effect of different sampling rates of time-series ECG signals on DL-based ECG classifiers. To the best of our knowledge, this is the first work to understand how varying sampling rates affect the performance of DL-based models for classifying 1D time-series ECG signals. Through our comprehensive experiments, we showed that accuracy can drop by as much as 20% when the training and testing sampling rates are different. We provide visual explanations to understand the differences in learned model features through activation maps when the sampling rates for training and testing data are different. We also investigated potential strategies to address the challenges posed by different sampling rates: (i) transfer learning, (ii) resampling, and (iii) training a DL model using ECG data at different sampling rates. 
    more » « less
  3. While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline. 
    more » « less
  4. Abstract Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric‐based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare. 
    more » « less