skip to main content


Title: Recent advances and applications of deep learning methods in materials science
Abstract Deep learning (DL) is one of the fastest-growing topics in materials data science, with rapidly emerging applications spanning atomistic, image-based, spectral, and textual data modalities. DL allows analysis of unstructured data and automated identification of features. The recent development of large materials databases has fueled the application of DL methods in atomistic prediction in particular. In contrast, advances in image and spectral data have largely leveraged synthetic data enabled by high-quality forward models as well as by generative unsupervised DL methods. In this article, we present a high-level overview of deep learning methods followed by a detailed discussion of recent developments of deep learning in atomistic simulation, materials imaging, spectral analysis, and natural language processing. For each modality we discuss applications involving both theoretical and experimental data, typical modeling approaches with their strengths and limitations, and relevant publicly available software and datasets. We conclude the review with a discussion of recent cross-cutting work related to uncertainty quantification in this field and a brief perspective on limitations, challenges, and potential growth areas for DL methods in materials science.  more » « less
Award ID(s):
1826218 2053929
PAR ID:
10414850
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications. 
    more » « less
  2. Introduction

    Computer vision and deep learning (DL) techniques have succeeded in a wide range of diverse fields. Recently, these techniques have been successfully deployed in plant science applications to address food security, productivity, and environmental sustainability problems for a growing global population. However, training these DL models often necessitates the large-scale manual annotation of data which frequently becomes a tedious and time-and-resource- intensive process. Recent advances in self-supervised learning (SSL) methods have proven instrumental in overcoming these obstacles, using purely unlabeled datasets to pre-train DL models.

    Methods

    Here, we implement the popular self-supervised contrastive learning methods of NNCLR Nearest neighbor Contrastive Learning of visual Representations) and SimCLR (Simple framework for Contrastive Learning of visual Representations) for the classification of spatial orientation and segmentation of embryos of maize kernels. Maize kernels are imaged using a commercial high-throughput imaging system. This image data is often used in multiple downstream applications across both production and breeding applications, for instance, sorting for oil content based on segmenting and quantifying the scutellum’s size and for classifying haploid and diploid kernels.

    Results and discussion

    We show that in both classification and segmentation problems, SSL techniques outperform their purely supervised transfer learning-based counterparts and are significantly more annotation efficient. Additionally, we show that a single SSL pre-trained model can be efficiently finetuned for both classification and segmentation, indicating good transferability across multiple downstream applications. Segmentation models with SSL-pretrained backbones produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of those with ImageNet-pretrained and randomly initialized backbones, respectively. We observe that finetuning classification and segmentation models on as little as 1% annotation produces competitive results. These results show SSL provides a meaningful step forward in data efficiency with agricultural deep learning and computer vision.

     
    more » « less
  3. Abstract. Recently, deep learning (DL) has emerged as a revolutionary andversatile tool transforming industry applications and generating new andimproved capabilities for scientific discovery and model building. Theadoption of DL in hydrology has so far been gradual, but the field is nowripe for breakthroughs. This paper suggests that DL-based methods can open up acomplementary avenue toward knowledge discovery in hydrologic sciences. Inthe new avenue, machine-learning algorithms present competing hypotheses thatare consistent with data. Interrogative methods are then invoked to interpretDL models for scientists to further evaluate. However, hydrology presentsmany challenges for DL methods, such as data limitations, heterogeneityand co-evolution, and the general inexperience of the hydrologic field withDL. The roadmap toward DL-powered scientific advances will require thecoordinated effort from a large community involving scientists and citizens.Integrating process-based models with DL models will help alleviate datalimitations. The sharing of data and baseline models will improve theefficiency of the community as a whole. Open competitions could serve as theorganizing events to greatly propel growth and nurture data science educationin hydrology, which demands a grassroots collaboration. The area ofhydrologic DL presents numerous research opportunities that could, in turn,stimulate advances in machine learning as well.

     
    more » « less
  4. As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization. 
    more » « less
  5. Recent frameworks for image denoising have demonstrated that it can be more productive to recover an image from a smoothed version of some geometric feature of the image rather than denoise the image directly. Improvements can be found both with respect to image quality metrics as well as the preservation of fine details. The challenge in working with this data is that mathematically sound mechanisms developed for handling natural image data do not necessarily apply, and this data itself can be quite ill behaved. In this work we learn both ‘geometric’ or nonlinear higher order features and corresponding regularizers. These approaches show improvement over recent modelbased deep learning (DL) image denoising methods both with respect to image quality metrics as well as the preservation of fine features. Furthermore, the proposed approach for enhancing DL architectures by incorporating geometrically-inspired features is motivated by and has the potential to feed back into mathematically sound models for solving a variety of problems in image processing. 
    more » « less