A key feature of the movement to create more entrepreneurial universities is incentivizing researchers to move discoveries beyond the laboratory and into society. This places additional expectations on Ph.D. students and faculty in science and engineering disciplines, who are encouraged to explore the commercialization of their research to promote the role of universities in innovation and job creation. A major barrier to this movement is that traditional Ph.D. training does not prepare researchers to participate in entrepreneurial activity, and as such its relevance to scientific work may not be evident. In this paper, we propose a course model for science and technology entrepreneurship education that has been designed to enable academic researchers to play a more active and informed role in the commercialization of their discovery. Its curricular foundation is a set of 14 factors that address the following four priorities: (1) technology readiness and timing, (2) intellectual property pathway decisions, (3) engagement with the entrepreneurial ecosystem, and (4) personal career choices. We describe the rationale for the course, its content and outcomes.
more »
« less
Faculty Views of Undergraduate Intellectual Property Policies and Practices
Given that undergraduate engineering students are becoming more involved in research and entrepreneurial activities that can lead to the generation of intellectual property (IP), this study investigates faculty attitudes related to IP policies and practices associated with educating and guiding undergraduate students. We surveyed a sample of 143 faculty members from both engineering and entrepreneurship education to examine: (a) the extent and nature of faculty involvement in undergraduate IP; (b) issues confronting faculty as they relate to undergraduate IP; (c) ways to catalyze undergraduate involvement in the generation of IP; (d) indicators of success; (e) future changes; and (f) best practices. We found that the majority of faculty members who were involved in undergraduate IP perceived that unclear policies, a lack of information, and unclear ownership of inventions were the most significant obstacles when guiding and teaching students. Furthermore, unwritten policies, biased ownership of information toward universities, lack of legal assistance for undergraduate students placed undergraduate students in a gray area where legal policies were not sufficient. Faculty who had previously guided students through the patent process reported greater concerns about teaching students the values and the principles of protecting intellectual property than those who did not. In terms of the role universities should play in enhancing undergraduate IP generation, most participants agreed that universities should educate students about IP protection (87%) and entrepreneurship (71%). The three most highly rated success indicators in educating undergraduate IP development were the increasing number of students involved in real world innovation and invention and entrepreneurial activities and enhancing student involvement with industry. When asked how universities could mitigate issues related to student IP, six themes emerged from participants’ open-ended responses, including: university taking no claim on student IP; early education and training about intellectual property issues; consulting assistance from TTO; creation of entrepreneurial culture or ecosystem; and access to low cost legal advice. Faculty members surveyed had strong views about where potential problems occur, and fewer recommendations on what resources should be provided. From the data, it is clear that there is still much to be accomplished to clarify the extent to which universities should be involved in managing undergraduate intellectual property. With further research and understanding, best practices for undergraduate IP generation can be applied to avoid further IP challenges for faculty, students, and academic institutions.
more »
« less
- Award ID(s):
- 1643280
- PAR ID:
- 10196721
- Date Published:
- Journal Name:
- 2020 ASEE Virtual Annual Conference Content Access Proceedings
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Miller, Eva (Ed.)The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learning employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics.more » « less
-
This study examines the roots of entrepreneurial career goals among today’s U.S. undergraduate engineering students. Extensive literature exists on entrepreneurship education and on students’ career decision making, yet little work connects the two. To address this gap, we explore a sample of 5,819 undergraduate engineering students from a survey administered in 2015 to a nationally representative set of twenty-seven U.S. engineering schools. We identify how individual background measures, occupational learning experiences, and socio-cognitive measures such as self-efficacy beliefs, outcome expectations, and interest in innovation and entrepreneurship affect students’ entrepreneurial career focus. Based on career focus, the sample is split into “Starters” and “Joiners” where Starters are students who wish to start a new venture and Joiners are those who wish to join an existing venture. Results show the demographic, behavioral, and socio-cognitive characteristics of each group. Findings suggest that relative to Joiners, Starters have stronger occupational self-efficacy beliefs which are driven by higher interests in innovation-related activities and ascribing greater importance to involvement in innovation practices early in their careers. Additionally, the significant influence of particular learning experiences is discussed. These results have implications for engineering and entrepreneurship education. (This paper earned Best Research Paper Award, 3rd Place, in the ENT division.)more » « less
-
null (Ed.)Academic research has led to a plethora of innovations and entrepreneurial resources (I&E), allowing for enhancements to the greater good. Institutions of higher education have recognized the value of faculty (and student) I&E in mission statements and strategic plans, including developing students’ skills, thinking, and employability. Yet commensurate promotion and tenure processes and policies are not a certainty. We describe (1) mapping the unknown terrain of factors relevant to the evaluation of tenure-line faculty members’ I&E in United States promotion considerations, and related training for students via a survey of 99 diverse institutions, and (2) recommendations that inform an alliance of 67+ US institutions pursuing best practices for recognizing faculty I&E impact through reward structures.more » « less
-
The First2 Network is a coalition of individuals from multiple universities, K-12 schools, industry, and government organizations from a rural eastern U.S. state who collaborate to ensure that rural, first-generation undergraduate students are prepared and motivated to persist in their science, technology, engineering, and mathematics (STEM) major. Since its inception in 2018, this National Science Foundation-funded project has utilized student summer immersive experiences for incoming freshmen and Networked Improvement Communities to produce replicable best practices, campus student clubs, student ambassador programs, institutional teams, statewide conferences, and many other methods, all for the purpose of promoting student STEM persistence across the state. This study employs social network analysis to explore the structure, growth, and impact of the connections across this Network over the five years of its existence. Social network analysis metrics indicate that the Network grew both in size and connectivity until 2022 when policy changes led to more institutional localization for the purpose of sustainability. Students have formed robust connections with other Network members throughout the course of the project, leading to a higher STEM persistence rate among students in the Network than average at their university. Faculty from different universities across the state have made connections, which has increased productivity as a result of network membership. The available data suggests that the Network has had a positive impact on both student retention and faculty collaboration, which should be sustained and have a positive impact on STEM persistence throughout the state in years to comemore » « less
An official website of the United States government

