skip to main content

Title: Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality

While elastic metasurfaces offer a remarkable and very effective approach to the subwavelength control of stress waves, their use in practical applications is severely hindered by intrinsically narrow band performance. In applications to electromagnetic and photonic metamaterials, some success in extending the operating dynamic range was obtained by using nonlocality. However, while electronic properties in natural materials can show significant nonlocal effects, even at the macroscales, in mechanics, nonlocality is a higher-order effect that becomes appreciable only at the microscales. This study introduces the concept of intentional nonlocality as a fundamental mechanism to design passive elastic metasurfaces capable of an exceptionally broadband operating range. The nonlocal behavior is achieved by exploiting nonlocal forces, conceptually akin to long-range interactions in nonlocal material microstructures, between subsets of resonant unit cells forming the metasurface. These long-range forces are obtained via carefully crafted flexible elements, whose specific geometry and local dynamics are designed to create remarkably complex transfer functions between multiple units. The resulting nonlocal coupling forces enable achieving phase-gradient profiles that are functions of the wavenumber of the incident wave. The identification of relevant design parameters and the assessment of their impact on performance are explored via a combination of semianalytical and numerical models. The nonlocal metasurface concept is tested, both numerically and experimentally, by embedding a total-internal-reflection design in a thin-plate waveguide. Results confirm the feasibility of the intentionally nonlocal design concept and its ability to achieve a fully passive and broadband wave control.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
p. 26099-26108
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface. 
    more » « less
  2. Abstract

    Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length overλ = 1200–1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.

    more » « less
  3. Abstract

    Multichannel devices, which can manipulate multiple distinguished wavefronts like a kaleidoscope, are preferably desired for compact systems with higher integration and smaller footprint. Particularly, multiband metasurfaces are one of the intuitive and effective approaches to expand the number of the operation channels in meta‐devices. In this work, a strategy to design four‐channel metasurface based on a novel single‐cell quad‐band meta‐atom is proposed for the kaleidoscopic wavefront manipulations. While illuminating a circularly polarized wave, the independent 2π phase shifts at four distinct frequencies can be obtained by the single‐layered substrate meta‐atom with almost theoretically maximal transmission amplitudes. As a proof‐of‐concept demonstration, a four‐channel metasurface is designed to realize a single‐vortex beam generator, a dual‐vortex beam generator, a meta‐hologram, and a focusing metalens in channels 1, 2, 3, and 4, respectively. The experiment and full‐wave simulation results agree very well with each other, validating the design concept. The proposed strategy has increased the number of operation frequencies for a single‐cell meta‐atom while guaranteeing the electromagnetic performance, and may lead to advances in a variety of multifunctional devices with a compact structure such as ultra‐thin metalenses, beam generators, and holographic displays.

    more » « less
  4. Abstract

    Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

    more » « less
  5. Abstract

    Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials.

    more » « less