This review focuses on the control over the degrees of freedom (DOF) in metasurfaces, which include the input DOF (the polarization, wavelength and incident angle of the input light and some dynamic controls), parameter DOF (the complex geometric design of metasurfaces) and output DOF (the phase, polarization and amplitude of the output light). This framework could clearly show us the development process of metasurfaces, from single-functional to multi-functional ones. Advantages of the multi-functional metasurfaces are discussed in the context of various applications, including 3D holography, broadband achromatic metalenses and multi-dimensional encoded information. By combining all the input and output DOF together, we can realize ideal optical meta-devices with deep subwavelength thickness and striking functions beyond the reach of traditional optical components. Moreover, new research directions may emerge when merging different DOF in metasurfaces with other important concepts, such as parity-time symmetry and topology, so that we can have the complete control of light waves in a prescribed manner. 
                        more » 
                        « less   
                    
                            
                            Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering
                        
                    
    
            Abstract Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1641084
- PAR ID:
- 10393633
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- National Science Review
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2095-5138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.more » « less
- 
            Abstract Optical metasurfaces performing analog image processing – such as spatial differentiation and edge detection – hold the potential to reduce processing times and power consumption, while avoiding bulky 4 F lens systems. However, current designs have been suffering from trade-offs between spatial resolution, throughput, polarization asymmetry, operational bandwidth, and isotropy. Here, we show that dispersion engineering provides an elegant way to design metasurfaces where all these critical metrics are simultaneously optimized. We experimentally demonstrate silicon metasurfaces performing isotropic and dual-polarization edge detection, with numerical apertures above 0.35 and spectral bandwidths of 35 nm around 1500 nm. Moreover, we introduce quantitative metrics to assess the efficiency of these devices. Thanks to the low loss nature and dual-polarization response, our metasurfaces feature large throughput efficiencies, approaching the theoretical maximum for a given NA. Our results pave the way for low-loss, high-efficiency and broadband optical computing and image processing with free-space metasurfaces.more » « less
- 
            Abstract Recent developments of utilizing plasmonic metasurfaces in photopatterning of designer molecular orientations have facilitated numerous new applications of liquid crystals; while the optical efficiency of the metamasks remains a critical issue, especially in the UV region. Here a new design of plasmonic metasurfaces made of parallelepiped arrays is presented which yield very high and broadband transmission in the UV–vis wavelength range. It is shown that this plasmonic metamask exhibits two polarization peaks originated from a cavity mode and lattice resonance respectively and demonstrated that complex designer molecular orientations can be photopatterned by using this metamask with significantly reduced exposure time. This type of high‐efficiency broadband plasmonic metasurfaces is not only important for high resolution photopatterning of molecular orientation but also tailorable for various other flat optics applications in the UV and near UV regions.more » « less
- 
            Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
