skip to main content


Title: Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys.
Gamma-prime strengthened Co–Al–W-based superalloys offer a unique combination of weldability, mechanical strength, creep resistance, and environmental resistance at temperature—leading many to consider the system as an alternative to nickel-base superalloys for future generation turbine engine hardware. However, little information exists regarding the deformation processing required to turn these novel alloys into useable product forms with appropriate microstructure refinement. Supersolvus thermomechanical processing sequences were successfully demonstrated using right-cylindrical upset specimens for two wrought γ′-strengthened cobalt-base superalloys at industrially relevant temperatures and deformation rates. Hot flow behavior and microstructure evolution were quantitatively characterized and compared to available information on a legacy nickel-base system, Waspaloy. Further, density functional theory was used to explore the compositional dependency of the intrinsic material properties influencing single-phase hot working behavior of model Ni–Al binary and Co–Al–W ternary systems. The apparent similarity in the supersolvus thermomechanical processing behavior of Co–Al–W-base systems and their two-phase γ–γ′ Ni-base counterparts suggests conventional pathways, models, and equipment may be leveraged to speed transition and implementation of wrought Co–Al–W-base alloys for components where their properties may be advantageous.  more » « less
Award ID(s):
1662646 1848128
NSF-PAR ID:
10197010
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Superalloys 2020
Page Range / eLocation ID:
857-869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step. 
    more » « less
  2. A second-generation Ni-based superalloy has been directionally solidified by using a Bridgman method, and the key processing steps have been investigated with a focus on their effects on microstructure evolution and mechanical properties. The as-grown microstructure is of a typical dendrite structure with microscopic elemental segregation during solidification. Based on the microstructural evidence and the measured phase transformation temperatures, a step-wise solution treatment procedure is designed to effectively eliminate the compositional and microstructural inhomogeneities. Consequently, the homogenized microstructure consisting of γ/γ′ phases (size of γ′ cube is ~400 nm) have been successfully produced after a two-step (solid solution and aging) treatment. The mechanical properties of the resulting alloys with desirable microstructures at room and elevated temperatures are measured by tensile tests. The strength of the alloy is comparable to commercial monocrystalline superalloys, such as DD6 and CMSX-4. The fracture modes of the alloy at various temperatures have also been studied and the corresponding deformation mechanisms are discussed. 
    more » « less
  3. Abstract

    Additive manufacturing promises a major transformation of the production of high economic value metallic materials, enabling innovative, geometrically complex designs with minimal material waste. The overarching challenge is to design alloys that are compatible with the unique additive processing conditions while maintaining material properties sufficient for the challenging environments encountered in energy, space, and nuclear applications. Here we describe a class of high strength, defect-resistant 3D printable superalloys containing approximately equal parts of Co and Ni along with Al, Cr, Ta and W that possess strengths in excess of 1.1 GPa in as-printed and post-processed forms and tensile ductilities of greater than 13% at room temperature. These alloys are amenable to crack-free 3D printing via electron beam melting (EBM) with preheat as well as selective laser melting (SLM) with limited preheat. Alloy design principles are described along with the structure and properties of EBM and SLM CoNi-base materials.

     
    more » « less
  4. Nickel-based superalloys (Ni-alloys) are widely used in flight-critical aeroengine components because of their excellent material properties at high temperatures such as yield strength, ductility, and creep resistance. However, these desirable high-temperature properties also make Ni-alloys very difficult to machine. This paper provides an overview and benchmarking of various constitutive models to provide the process modeling community with an objective comparison between various calibrated material models, to increase the accuracy of process model predictions for machining of Ni-alloys. Various studies involving the Johnson-Cook model and the calibration of its constants in finite element simulations are discussed. Significant discrepancies exist between researchers' approaches to calibrating constitutive models. Moreover, this paper provides a comprehensive overview of pedigreed physical material properties for a range of Ni-alloys. In this context, the variation of thermal properties and thermally induced stresses over machining temperature regimes are modeled for a variety of Ni-alloys. The chemical compositions and applications for a range of relevant Ni-alloys are also explored. Overall, this manuscript identifies the need for more comprehensive analysis and process-specific characterization of thermomechanical properties for difficult-to-machine Ni-alloys to improve machining performance and aeroengine component quality. 
    more » « less
  5. Abstract Ni-based superalloys offer a unique combination of mechanical properties, corrosion resistance and high temperature performance. Near ambient pressure X-ray photoelectron spectroscopy was used to study in operando the initial steps of oxidation for Ni-5Cr, Ni-15Cr, Ni-30Cr and Ni-15Cr-6W at 500 °C, p(O 2 )=10 −6 mbar. The comparison of oxide evolution for these alloys quantifies the outsized impact of W in promoting chromia formation. For the binary alloys an increase in chromia due to Cr-surface enrichment is followed by NiO nucleation and growth thus seeding a dual-layer structure. The addition of W (Ni-15Cr-6W) shifts the reaction pathways towards chromia thus enhancing oxide quality. Density functional theory calculations confirm that W atoms adjacent to Cr create highly favorable oxygen adsorption sites. The addition of W supercharges the reactivity of Cr with oxygen essentially funneling oxygen atoms into Cr sites. The experimental results are discussed in the context of surface composition, chemistry, reactant fluxes, and microstructure. 
    more » « less