Creep strength in polycrystalline Ni-based superalloys is influenced by the formation of a rich variety of planar faults forming within the strengthening γ' phase. The lengthening and thickening rate of these faults – and therefore the creep rate – depends on an intriguing combination of dislocation interactions at the γ/γ' interface and diffusional processes of the alloying elements at the core of the fault tip. The effect of alloy composition on this process is not fully understood. In this work we use correlative high resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy to study the deformation faults in two different Ni-based superalloys with carefully designed ratios of disordering-to-ordering-promoting elements (Co-Cr against Nb-Ta-Ti). The results show that the additions of ordering-promoting elements reduce the diffusional processes required for the faults to lengthen and thicken thus reducing the creep rates found for the higher Nb-Ta-Ti alloy. These insights provide a path to follow in the design of improved grades of creep-resistant polycrystalline alloys beyond 700 °C. 
                        more » 
                        « less   
                    
                            
                            Influence of Fe additions on the property profile of high-strength CoNi-based superalloys
                        
                    
    
            CoNi-based superalloys offer excellent high-temperature properties; yet, Co is also a strategic alloying element, and its content should only be as high as necessary. This study investigates Fe as a partial substitute for Co to reduce costs while evaluating its impact on mechanical properties. To evaluate this, we systematically investigate the effect of Fe substitutions on thermophysical properties, microstructure, partitioning behavior, lattice misfit, yield strength, and creep performance of three polycrystalline CoNi-based superalloys derived from CoWAlloy1 (Co–32Ni–12Cr–6Al–3W–2.5Ti–1.5Ta–0.4Si–0.1Hf–0.08B all in at. %). In these alloys, 4, 8, and 12 at. % Co is replaced with Fe. Increasing Fe content results in a gradual reduction in the solvus, solidus, and liquidus temperatures by 3.0, 1.9, and 1.4 °C per at. % Fe, respectively. The γ′ volume fraction and the lattice misfit decrease by about 0.7% and 0.01%, respectively, per at. % Fe substitution for Co. Fe predominantly partitions to the γ matrix, enhancing the partitioning of Co and Ni while reducing that of Al, Cr, and Ta, with no significant effect on Ti and W. Substituting Co with Fe moderately reduces yield and creep strength, primarily due to the decreasing γ′ volume fraction and a transition in the dominant deformation mechanisms from stacking fault shearing and microtwinning to matrix-based deformation as Fe content increases. Beneficial elemental segregation behaviors and localized phase transformations along creep-induced stacking faults remain active in alloys with high Fe content. These findings highlight the potential of Fe alloying to reduce costs while maintaining high-temperature strength in CoNi-based superalloys. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2323717
- PAR ID:
- 10592246
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 137
- Issue:
- 19
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gamma-prime strengthened Co–Al–W-based superalloys offer a unique combination of weldability, mechanical strength, creep resistance, and environmental resistance at temperature—leading many to consider the system as an alternative to nickel-base superalloys for future generation turbine engine hardware. However, little information exists regarding the deformation processing required to turn these novel alloys into useable product forms with appropriate microstructure refinement. Supersolvus thermomechanical processing sequences were successfully demonstrated using right-cylindrical upset specimens for two wrought γ′-strengthened cobalt-base superalloys at industrially relevant temperatures and deformation rates. Hot flow behavior and microstructure evolution were quantitatively characterized and compared to available information on a legacy nickel-base system, Waspaloy. Further, density functional theory was used to explore the compositional dependency of the intrinsic material properties influencing single-phase hot working behavior of model Ni–Al binary and Co–Al–W ternary systems. The apparent similarity in the supersolvus thermomechanical processing behavior of Co–Al–W-base systems and their two-phase γ–γ′ Ni-base counterparts suggests conventional pathways, models, and equipment may be leveraged to speed transition and implementation of wrought Co–Al–W-base alloys for components where their properties may be advantageous.more » « less
- 
            The presence of higher vol% of gamma prime (γ′) in Nickel-based superalloys is crucial for achieving superior high-temperature strength and creep resistance properties. While directed energy deposition (DED) offers promising solutions for repairing these alloys, they usually lack the precipitation of γ′ phases due to rapid solidification. This study investigates the precipitation behavior in DED-produced Inconel 100 (IN100) superalloy during as-deposited and post-heat treatment conditions, focusing on the evolution of γ′ morphology, size, volume fraction, and their correlation with mechanical properties. Results obtained from the combination of experimental studies and CALPHAD-based thermodynamic simulations in as-deposited conditions showed the presence of a γ matrix with MC carbides (rich in Ti and Mo) and eutectic γ/γ' phases in the interdendritic region, which are deleterious to mechanical properties. A subsequent post-heat treatment dissolved these intermetallic phases and improved the vol% of γ′. The solution heat treatments form the γ' in complex structures, following the Ostwald ripening and reverse coarsening effects, where γ' was observed in spherical (< 0.1 μm), cubic (0.1–0.5 μm), and octet (> 0.5 μm) shapes. One-step age hardening significantly increased the volume fraction of γ′, changing the γ′ morphology to cubes. The presence of γ′ was further enhanced during a 2-step age hardening with the precipitation of secondary γ′. The γ′ precipitation behavior was statistically quantified using advanced digital image analysis protocols and analyzed using Gaussian Mixture Models (GMM). The findings offer valuable insights into tailoring microstructure and enhancing precipitation strengthening in AM IN100, with potential benefits for high-temperature aerospace applications.more » « less
- 
            In this investigation, we explore the impact of the Nb–Al ratio on the microstructural and mechanical properties of high-entropy superalloys (HESAs), focusing on hierarchical microstructures. Utilizing a series of HESAs with varying Nb–Al ratios, our study employs advanced characterization techniques, including differential scanning calorimetry (DSC) for thermal analysis, electron probe micro-analyzer (EPMA) for compositional analysis for the design of a homogenization treatment at 1500 K/24 h. Transmission electron microscopy (TEM) reveals that the increasing Nb–Al ratio refines the γ' precipitates and influences the size and volume fraction of embedded hierarchical γ particles. ThermoCalc equilibrium phase analysis and Vegard's-law calculations reveal a minimal lattice misfit between these phases, highlighting the interplay between Nb–Al ratio and phase stability. The increasing Nb–Al ratio inhibits the formation of hierarchical γ particles. We observe an enhancement in hardness from 433 HV to 492 HV with an increasing Nb–Al ratio. This study provides valuable insights into the role of Nb and the Nb–Al ratio in HESAs with hierarchical microstructures, demonstrating its significant influence on γ particle formation within γ' precipitates and mechanical strength. The findings advance our understanding of alloy design and pave the way for developing advanced HESAs for high-temperature applications.more » « less
- 
            This work proposes a methodology for designing high-strength precipitation-hardened high entropy alloys (HEAs) with an FCC matrix and L12 precipitates. High-throughput solidification calculations were conducted using the CALPHAD method, evaluating 11,235 alloys in the Cr-Co-Ni-Al-Ti system under specific boundary conditions. The acquired information was used to filter the alloys, focusing on alloys exhibiting an FCC+L12 phase field at 750 °C, a solidification interval narrower than 100 °C, and a solvus temperature under 1100 çC. The filtered alloys were analyzed to estimate their solid solution and precipitation hardening contributions to yield strength, with antiphase boundary energy (APB) assessed using two models. Three alloys were selected for testing the proposed strategy, including one with the highest yield stress and others for comparison. These alloys were produced, processed, and characterized using DSC, synchrotron XRD, SEM, and TEM. The results showed that the desired microstructure was achieved, with the alloys consisting of an FCC matrix and a high-volume fraction of L12 precipitates. Tensile tests at room temperature, 650 °C, 750 °C, and 850 °C demonstrated that the proposed model predicts well the yield strength trends, demonstrating the potential of the proposed approach for accelerating the discovery and development of novel HEAs with tailored properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
