skip to main content


Title: Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students
Award ID(s):
1657509 1657519
NSF-PAR ID:
10197016
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
7
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reconfigurable Intelligent Surfaces (RIS) also known as Intelligent Reflecting Surfaces (IRS) often depend upon metasurfaces. These typically comprise of a large array of passive elements that can be fabricated to modulate reflection amplitude or phase or both to create tunable functions that are independently controlled. Various RIS are developed to improve spectral efficiency through ultrawideband antennas, enhanced beamforming with higher gain and bandwidth, spatial reconfigurability, selective and adjustable isolation, and other desired features. Several approaches to tune the RIS performance are being explored. This paper reviews the primary approaches and the benefit of emerging tunable nanomaterials in achieving such RIS functions. Designs with 1-bit and 6-bit phase shifters are discussed in the first part. Various opportunities with nanomaterials and nanodevices to induce such phase shifts are discussed in the last part of the paper. 
    more » « less
  2. Reconfigurable Intelligent Surfaces (RIS) also known as Intelligent Reflecting Surfaces (IRS) often depend upon metasurfaces. These typically comprise of a large array of passive elements that can be fabricated to modulate reflection amplitude or phase or both to create tunable functions that are independently controlled. Various RIS are developed to improve spectral efficiency through ultrawideband antennas, enhanced beamforming with higher gain and bandwidth, spatial reconfigurability, selective and adjustable isolation, and other desired features. Several approaches to tune the RIS performance are being explored. This paper reviews the primary approaches and the benefit of emerging tunable nanomaterials in achieving such RIS functions. Designs with 1-bit and 6-bit phase shifters are discussed in the first part. Various opportunities with nanomaterials and nanodevices to induce such phase shifts are discussed in the last part of the paper. 
    more » « less