skip to main content


Title: “Because I’m Not Always Constantly Getting Everything Right”: Gender Differences in Engineering Identity Formation in Elementary Students
Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities.  more » « less
Award ID(s):
1657509
NSF-PAR ID:
10197017
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society of Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With ongoing underrepresentation of women in STEM fields, it is necessary to explore ways to maintain girls' STEM interest throughout elementary and middle school. This study is situated within the context of Designs in STEM (pseudonym), an out‐of‐school program that engages urban youth in authentic STEM experiences. Participants were 30 girls attending Designs in STEM in grades four and five. Participants were interviewed about their STEM interest, out‐of‐school versus in‐school STEM learning experiences, and how gender relates to STEM success. Several key findings emerged. First, although students' prior school experiences with mathematics resulted in less positive dispositions toward mathematics than other STEM disciplines, their experiences at Designs in STEM revealed that mathematics could be fun and valuable when used for real‐world purposes. Second, students found Designs in STEM to be more engaging and inspiring due to the context and pedagogies employed by Designs in STEM instructors. Third, despite observing girls' behavior that was more aligned with academic success, participants still identified STEM advantages for boys. Finally, participants defined success and intelligence in STEM based on speed and tracking. Discussion focuses on the need to consider how school‐based mathematics instruction may serve as a barrier to girls' STEM interest and involvement.

     
    more » « less
  2. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  3. The literature linking adulthood criminality to cumulative disadvantage and early school misbehavior demonstrates that understanding the mechanisms underlying student behavior and the responses of teachers and administrators is crucial in comprehending racial/ethnic disparities in actual or perceived school misbehavior. We use data on 19,160 ninth graders from the nationally representative High School Longitudinal Study of 2009 to show that boys’ and girls’ negative achievement and negative experiences with teachers relate more closely to school misbehavior than the contextual measures (e.g., negative peer climate, proportion Black) that have often been emphasized as most salient for misbehavior. Differences in negative achievement and experiences completely explain Black boys’, Latinx boys’, and Black girls’ heightened levels of school misbehavior relative to White youth, and Asian boys’ and girls’ lower levels of school misbehavior. In contrast, differences in negative achievement and experiences only partially explain Latinx girls’ higher levels of school misbehavior relative to White girls.

     
    more » « less
  4. A major driver in K-12 engineering education has been university-based outreach initiatives. In the U.S, there are an estimated 600,000 K-12 students participating in university-led engineering outreach annually (Iversen, 2014-2015). Reaching students as young as elementary school is important as students form their interest and impressions in engineering and other STEM disciplines early (Galton in Ormerod & Duckworth, 1975, p. 39; Maltese & Tai, 2010; Tai, Qiu,Liu, Maltese, & Fan, 2006) and those interests often decline in middle school (Murphy & Beggs, 2003; Neathery, 1997; Ormerod & Duckworth, 1975; Osborne, Simon, & Collins, 2003. University engineering students are often positioned as role models for the K-12 students they work with. However, to date, little research has been done on how students select role models and how to optimize the interactions between young students and university students to increase the likelihood that they will be taken as role models This paper will show preliminary data and analysis from an NSF-funded research project that is examining the dynamics between undergraduate university students providing outreach and elementary school student participants. The paper will focus on a case-study of a single 4th grade classroom and how different dynamics related to sharing personal information, engineering identity, and other interests interact with elementary school students identifying undergraduate engineering students as role models. Potential codes for larger qualitative studies will be shared as well as preliminary quantitative results from surveys instruments (EIDS, Draw an Engineer). 
    more » « less
  5. Abstract Engineering outreach programs often portray outreach educators as role models for youth. It is widely believed that introducing youth, especially girls, to potential engineering role models will broaden participation in engineering majors and careers. Based on interviews with and surveys of fourth- and fifth-grade girls participating in an engineering outreach program, we question whether youth are looking for career role models, and we challenge the assumption that youth will take up an adult as a role model simply because the adult is presented as such. We question what role these ‘‘models’’ play in the minds and lives of youth and argue that it may differ from what we expect. To be clear, we are not arguing that engineering role models are not important or not influential. Rather, we think it is important to gain a better understanding of how youth, particularly girls, view these potential engineering role models, which will allow us to optimize the significance of these adults to the youth participating in engineering outreach. 
    more » « less