skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Segregation of four Agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons
Agrobacterium tumefaciensC58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.  more » « less
Award ID(s):
1715103
PAR ID:
10197037
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
p. 26366-26373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bassler, Bonnie (Ed.)
    Agrobacterium tumefaciens is a rod-shaped bacterium that grows by addition of PG at only one pole. The factors involved in maintaining cell asymmetry during the cell cycle with an inert old pole and a growing new pole are not well understood. Here we investigate the role of PopZ At , a homologue of Caulobacter crescentus PopZ (PopZ Cc ), a protein essential in many aspects of pole identity in C. crescentus . We report that the loss of PopZ At leads to the appearance of branching cells, minicells, and overall growth defects. As many plant and animal pathogens also employ polar growth, understanding this process in A. tumefaciens may lead to the development of new strategies to prevent the proliferation of these pathogens. In addition, studies of A. tumefaciens will provide new insights into the evolution of the genetic networks that regulate bacterial polar growth and cell division. 
    more » « less
  2. Bacterial chromosome segregation, ensuring equal distribution of replicated DNA, is crucial for cell division. During fast growth, replication and segregation co-occur. Overlapping cycles of DNA replication and segregation require efficient segregation of the origin of replication (Ori), which is known to be orchestrated by the protein families SMC and ParAB. We used data-driven physical modeling to study the roles of these proteins in Ori segregation. Developing a polymer model of the Bacillus subtilis genome based on Hi-C data, we analyzed chromosome structures in wild-type cells and mutants lacking SMC or ParAB. Wild-type chromosomes showed clear Ori segregation, while the mutants lacked faithful segregation. The model suggests that the dual role of ParB proteins, loading SMCs near the Ori and interacting with ParA, is crucial for Ori segregation. ParB-loaded SMCs compact individual Ori and introduce an effective inter-sister repulsion that regulates the ParAB-activity to avoid the detrimental scenario of pulling both Ori to the same pole. The model makes testable predictions for sister-chromosome-resolved Hi-C experiments and proposes that replicated sister chromosomes segregate via mechanistic cooperation of SMC and ParAB activity. 
    more » « less
  3. Abstract Research on chromosome organization and cell cycle progression in spherical bacteria, particularlyStaphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics inS. aureususing a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that theS. aureuscell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the “cell poles”. We further used this system to assess the role of various proteins with a role inS. aureuschromosome biology, focusing on the ParB-parSand SMC-ScpAB systems. Our results demonstrate that ParB binds fiveparSchromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role inS. aureuschromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division—Noc, FtsK, SpoIIIE and XerC—on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization inS. aureus, contributing to our knowledge on chromosome biology of spherical bacteria. 
    more » « less
  4. Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation. 
    more » « less
  5. Boccard, Frederic (Ed.)
    Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated thatB.burgdorferiis polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of theB.burgdorferigenome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosomeoriCregion, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosomeoriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes. 
    more » « less