skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robotics Application of a Method for Analytically Computing Infinitesimal Phase Response Curves
This work explores a method for analytically computing the infinites-imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the iPRCs, could assist in tuning the strength and locations of sensory pathways. We model the SNS exoskeleton controller in a reduced form using a state-space rep-resentation that interfaces neural and motor dynamics. The neural dynamics are modeled after non-spiking neurons configured as a central pattern generator (CPG), while the motor dynamics model a power unit for the hip joint of the exoskeleton. Within the dynamics are piecewise functions and hard boundaries (i.e. “sliding conditions”), which cause discontinuities in the vector field at their boundaries. The analytical methods for computing the iPRCs used in this work apply the adjoint equation method with jump conditions that are able to account for these discontinuities. To show the accuracy and speed provided by these methods, we compare the analytical and brute-force solutions.  more » « less
Award ID(s):
1739800
PAR ID:
10197117
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Living Machines: Conference on Biomimetic and Biohybrid Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study introduces a hybrid model that utilizes a model-based optimization method to generate training data and an artificial neural network (ANN)-based learning method to offer real-time exoskeleton support in lifting activities. For the model-based optimization method, the torque of the knee exoskeleton and the optimal lifting motion are predicted utilizing a two-dimensional (2D) human–exoskeleton model. The control points for exoskeleton motor current profiles and human joint angle profiles from cubic B-spline interpolation represent the design variables. Minimizing the square of the normalized human joint torque is considered as the cost function. Subsequently, the lifting optimization problem is tackled using a sequential quadratic programming (SQP) algorithm in sparse nonlinear optimizer (SNOPT). For the learning-based approach, the learning-based control model is trained using the general regression neural network (GRNN). The anthropometric parameters of the human subjects and lifting boundary postures are used as input parameters, while the control points for exoskeleton torque are treated as output parameters. Once trained, the learning-based control model can provide exoskeleton assistive torque in real time for lifting tasks. Two test subjects’ joint angles and ground reaction forces (GRFs) comparisons are presented between the experimental and simulation results. Furthermore, the utilization of exoskeletons significantly reduces activations of the four knee extensor and flexor muscles compared to lifting without the exoskeletons for both subjects. Overall, the learning-based control method can generate assistive torque profiles in real time and faster than the model-based optimal control approach. 
    more » « less
  2. Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other brain regions. To avoid misinterpreting temporally structured inputs as intrinsic dynamics, dynamical models of neural activity should account for measured inputs. However, incorporating measured inputs remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying neural computations of behavior. We first show how training dynamical models of neural activity while considering behavior but not input or input but not behavior may lead to misinterpretations. We then develop an analytical learning method for linear dynamical models that simultaneously accounts for neural activity, behavior, and measured inputs. The method provides the capability to prioritize the learning of intrinsic behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs different tasks, the method correctly finds the same intrinsic dynamics regardless of the task while other methods can be influenced by the task. In neural datasets from three subjects performing two different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic neural dynamics that are missed by other methods and are more predictive of behavior and/or neural activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely similar across the different subjects and tasks, whereas the overall neural dynamics are not. These input-driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be missed. 
    more » « less
  3. One developing approach for robotic control is the use of networks of dynamic neurons connected with conductance-based synapses, also known as Synthetic Nervous Systems (SNS). These networks are often developed using cyclic topologies and heterogeneous mixtures of spiking and non-spiking neurons, which is a difficult proposition for existing neural simulation software. Most solutions apply to either one of two extremes, the detailed multi-compartment neural models in small networks, and the large-scale networks of greatly simplified neural models. In this work, we present our open-source Python package SNS-Toolbox, which is capable of simulating hundreds to thousands of spiking and non-spiking neurons in real-time or faster on consumer-grade computer hardware. We describe the neural and synaptic models supported by SNS-Toolbox, and provide performance on multiple software and hardware backends, including GPUs and embedded computing platforms. We also showcase two examples using the software, one for controlling a simulated limb with muscles in the physics simulator Mujoco, and another for a mobile robot using ROS. We hope that the availability of this software will reduce the barrier to entry when designing SNS networks, and will increase the prevalence of SNS networks in the field of robotic control. 
    more » « less
  4. Task-invariant feedback control laws for powered exoskeletons are preferred to assist human users across varying locomotor activities. This goal can be achieved with energy shaping methods, where certain nonlinear partial differential equations, i.e., matching conditions, must be satisfied to find the achievable dynamics. Based on the energy shaping methods, open-loop systems can be mapped to closed-loop systems with a desired analytical expression of energy. In this paper, the desired energy consists of modified potential energy that is well-defined and unified across different contact conditions along with the energy of virtual springs and dampers that improve energy recycling during walking. The human-exoskeleton system achieves the input-output passivity and Lyapunov stability during the whole walking period with the proposed method. The corresponding controller provides assistive torques that closely match the human torques of a simulated biped model and able-bodied human subjects’ data. 
    more » « less
  5. People suffering from neurological conditions (NCs) can benefit from motorized functional electrical stimulation (FES)-based rehabilitation equipment, called hybrid exoskeletons. These hybrid exoskeletons incorporate muscle-motor interaction that requires both the control of human muscles (i.e., FES) and robot motors to obtain a desirable performance. Two types of controllers (deep neural networks (DNN)-based and Admittance-based) were developed in this paper for a hybrid exoskeleton to control both human muscles and the exoskeleton’s motors. The uncertain dynamics of the hybrid exoskeleton are approximated by DNN to enable efficient FES control. The approximated DNN weights and biases were implemented in a control law where they were updated in multiple timescales. Specifically, the inner-layer DNN weights were updated iteratively offline while the outer-layer weights were updated online in real-time. The update law for the output-layer DNN weights was augmented with a concurrent learning (CL) inspired term to improve the learning performance of the DNN and, consequently, the overall system performance. The admittance-based motor controller uses torque feedback and desired torque contribution from the participant to modify the motor’s desired trajectory without forcing the participant to follow along predetermined trajectories and to promote the overall safety of the system. A Lyapunov-based stability analysis was completed for both control systems to ensure overall system performance. 
    more » « less