skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Concurrent Learning Augmented DNN-Based and Admittance Control of a Hybrid Exoskeleton
People suffering from neurological conditions (NCs) can benefit from motorized functional electrical stimulation (FES)-based rehabilitation equipment, called hybrid exoskeletons. These hybrid exoskeletons incorporate muscle-motor interaction that requires both the control of human muscles (i.e., FES) and robot motors to obtain a desirable performance. Two types of controllers (deep neural networks (DNN)-based and Admittance-based) were developed in this paper for a hybrid exoskeleton to control both human muscles and the exoskeleton’s motors. The uncertain dynamics of the hybrid exoskeleton are approximated by DNN to enable efficient FES control. The approximated DNN weights and biases were implemented in a control law where they were updated in multiple timescales. Specifically, the inner-layer DNN weights were updated iteratively offline while the outer-layer weights were updated online in real-time. The update law for the output-layer DNN weights was augmented with a concurrent learning (CL) inspired term to improve the learning performance of the DNN and, consequently, the overall system performance. The admittance-based motor controller uses torque feedback and desired torque contribution from the participant to modify the motor’s desired trajectory without forcing the participant to follow along predetermined trajectories and to promote the overall safety of the system. A Lyapunov-based stability analysis was completed for both control systems to ensure overall system performance.  more » « less
Award ID(s):
2230971
PAR ID:
10651806
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
802 to 809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid exoskeletons are used to blend the rehabilitative efficacy and mitigate the shortcomings of functional electrical stimulation (FES) and exoskeleton-based rehabilitative solutions. This paper introduces a novel nonlinear controller that may potentially improve the rehabilitative efficiency of a lower limb hybrid exoskeleton by implementing four key features into the FES and exoskeleton controllers. First, the FES input to the user’s muscles is saturated based on user preference to ensure user comfort. Second, rather than discarding the excess control effort from the saturated FES input, it is redirected into the exoskeleton’s motor controller. Third, a safe deep neural network (DNN) is designed to estimate the unknown dynamics of the hybrid exoskeleton and the DNN is implemented in the FES controller to improve the control efficiency and tracking performance. Fourth, an adaptive update law is designed to estimate the unknown muscle control effectiveness to facilitate the implementation of the DNN. Lyapunov stability-based methods are used to generate real-time adaptive update laws that will train the adaptive estimate of the muscle effectiveness and the output layer weights of the DNN in real-time, ensure the effectiveness and safety of the controllers, and prove global asymptotic tracking of the desired trajectory. 
    more » « less
  2. Functional electrical stimulation (FES) is widely used for rehabilitating individuals with total or partial limb paralysis, but challenges like muscle fatigue and discomfort limit its effectiveness. Hybrid exoskeletons combine the rehabilitative benefits of exoskeletons and FES, while mitigating the drawbacks of each. However, despite hybrid exoskeletons being highly effective in rehabilitation, the dynamics associated with these systems are complex. Deep neural networks (DNNs) can approximate these complex hybrid exoskeleton dynamics; however, they traditionally lack stability guarantees and robustness, hindering their application in real-world systems. Moreover, traditional training methods (e.g., gradient descent) require an extensive dataset and offline training, further hindering a DNNs practical use. Therefore, this paper presents an innovative Lyapunov-based adaptation law, with a gradient descent-like structure, that is designed to update all layer weights of a DNN in real-time for a DNN-based hybrid exoskeleton control framework. To promote user comfort and safety, a saturation limit was implemented on the DNN-based FES controller and the excess control effort was redirected to the exoskeleton. A Lyapunov-based stability analysis was performed on the DNN-based hybrid exoskeleton control system to prove global asymptotic trajectory tracking. A numerical simulation of the designed controller was performed to validate the results. 
    more » « less
  3. Recent studies suggest that deep neural networks (DNNs) have the potential to outperform neural networks (NNs) in approximating complex dynamics, which may enhance the tracking performance of a control system. However, unlike NN-based nonlinear control systems, designing update policies for the inner-layer weights of a DNN using Lyapunov-based stability methods is problematic since the inner-layer weights are nested within activation functions. Traditional DNN training methods (e.g., gradient descent) may improve the approximation capability of a DNN and thus could enhance a DNN-based controller’s tracking performance; however, traditional DNN-based control approaches lack stability guarantees and may be ineffective in training the DNN without large data sets, which could hinder the tracking performance. In this work, a DNN-based control structure is developed for a hybrid exoskeleton, which combines a rehabilitative robot with functional electrical stimulation (FES). The proposed control system updates the DNN weights in real-time and a rigorous Lyapunov-based stability analysis is performed to ensure semi-global asymptotic trajectory tracking, even without the presence of a data set. Specifically, a Lyapunov-based update law is developed for the output-layer DNN weights and Lyapunov-based constraints are established for the adaptation laws of the inner-layer DNN weights. Additionally, the DNN-based FES controller was designed to be saturated to increase the comfort and safety of the participant. 
    more » « less
  4. A hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges. A higher-level neural network–based iterative learning controller (NNILC) is derived to generate torques needed to drive the hybrid system. Then, a low-level model predictive control (MPC)-based allocation strategy optimally distributes the torque contributions between FES and the exoskeleton’s knee motors based on the muscle fatigue and recovery characteristics of a participant’s quadriceps muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-dependent desired joint trajectories. The experimental results on four non-disabled participants validate the effectiveness of the proposed NNILC-MPC framework. The root mean square error (RMSE) of the knee joint and the hip joint was reduced by 71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st sit-to-stand iteration. 
    more » « less
  5. For individuals with neurological conditions (NCs) affecting the muscles of their legs, motorized functional electrical stimulation (FES) cycling is a rehabilitation strategy which offers numerous health benefits. Motorized FES cycling is an example of cooperative physical human-robot interaction where both the cycle’s motor and rider’s muscles (through electrical stimulation) must be well controlled to achieve desired performance. Since every NC is unique, adaptive control of motorized FES cycling is motivated over a one-size-fits-all approach. In this paper, a robust sliding-mode controller is employed on the rider’s muscles while an adaptive neural network admittance controller is employed on the cycle’s motor to preserve rider comfort and safety. Through a Lyapunov-like switched systems stability analysis, global asymptotic stability of the cycle controller is guaranteed and the muscle controller is proven to be passive with respect to the cycle. Experiments on one able-bodied participant were conducted to validate the control design. 
    more » « less