skip to main content


Title: Network‐based feature selection reveals substructures of gene modules responding to salt stress in rice
Abstract

Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data.

 
more » « less
Award ID(s):
1557417
NSF-PAR ID:
10197228
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
3
Issue:
8
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Maize (Zea maysL.), a model species for genetic studies, is one of the two most important crop species worldwide. The genome sequence of the reference genotype, B73, representative of the stiff stalk heterotic group was recently updated (AGPv4) using long‐read sequencing and optical mapping technology. To facilitate the use ofAGPv4 and to enable functional genomic studies and association of genotype with phenotype, we determined expression abundances for replicatedmRNA‐sequencing datasets from 79 tissues and five abiotic/biotic stress treatments revealing 36 207 expressed genes. Characterization of the B73 transcriptome across six organs revealed 4154 organ‐specific and 7704 differentially expressed (DE) genes following stress treatment. Gene co‐expression network analyses revealed 12 modules associated with distinct biological processes containing 13 590 genes providing a resource for further association of gene function based on co‐expression patterns. Presence−absence variants (PAVs) previously identified using whole genome resequencing data from 61 additional inbred lines were enriched in organ‐specific and stress‐induced DE genes suggesting thatPAVs may function in phenological variation and adaptation to environment. Relative to core genes conserved across the 62 profiled inbreds,PAVs have lower expression abundances which are correlated with their frequency of dispersion across inbreds and on average have significantly fewer co‐expression network connections suggesting that a subset ofPAVs may be on an evolutionary path to pseudogenization. To facilitate use by the community, we developed the Maize Genomics Resource website (maize.plantbiology.msu.edu) for viewing and data‐mining these resources and deployed two new views on the maize electronic Fluorescent Pictograph Browser (bar.utoronto.ca/efp_maize).

     
    more » « less
  2. Premise

    Despite myriad examples of local adaptation, the phenotypes and genetic variants underlying such adaptive differentiation are seldom known. Recent work on freezing tolerance and local adaptation in ecotypes ofArabidopsis thalianafrom Italy and Sweden provides an essential foundation for uncovering the genotype–phenotype–fitness map for an adaptive response to a key environmental stress.

    Methods

    We examined the consequences of a naturally occurring loss‐of‐function (LOF) mutation in an Italian allele of the gene that encodes the transcription factorCBF2,which underlies a major freezing‐tolerance locus. We used four lines with a Swedish genetic background, each containing aLOFCBF2allele. Two lines had introgression segments containing the ItalianCBF2allele, and two contained deletions created usingCRISPR‐Cas9. We used a growth chamber experiment to quantify freezing tolerance and gene expression before and after cold acclimation.

    Results

    Freezing tolerance was lower in the Italian (11%) compared to the Swedish (72%) ecotype, and all four experimentalCBF2LOFlines had reduced freezing tolerance compared to the Swedish ecotype. Differential expression analyses identified 10 genes for which allCBF2LOFlines, and theITecotype had similar patterns of reduced cold responsive expression compared to theSWecotype.

    Conclusions

    We identified 10 genes that are at least partially regulated byCBF2that may contribute to the differences in cold‐acclimated freezing tolerance between the Italian and Swedish ecotypes. These results provide novel insight into the molecular and physiological mechanisms connecting a naturally occurring sequence polymorphism to an adaptive response to freezing conditions.

     
    more » « less
  3. Summary

    Rice is an important cereal crop, being a staple food for over half of the world's population, and sexual reproduction resulting in grain formation underpins global food security. However, despite considerable research efforts, many of the genes, especially long intergenic non‐codingRNA(lincRNA) genes, involved in sexual reproduction in rice remain uncharacterized. With an increasing number of public resources becoming available, information from different sources can be combined to perform gene functional annotation. We report the development of MCRiceRepGP, a machine learning framework which integrates heterogeneous evidence and employs multicriteria decision analysis and machine learning to predict coding and lincRNA genes involved in sexual reproduction in rice. The rice genome was reannotated using deep‐sequencing transcriptomic data from reproduction‐associated tissue/cell types identifying previously unannotated putative protein‐coding genes and lincRNAs. MCRiceRepGP was used for genome‐wide discovery of sexual reproduction associated coding and lincRNA genes. The protein‐coding and lincRNA genes identified have distinct expression profiles, with a large proportion of lincRNAs reaching maximum expression levels in the sperm cells. Some of the genes are potentially linked to male‐ and female‐specific fertility and heat stress tolerance during the reproductive stage. MCRiceRepGP can be used in combination with other genome‐wide studies, such as genome‐wide association studies, giving greater confidence that the genes identified are associated with the biological process of interest. As more data, especially about mutant plant phenotypes, become available, the power of MCRiceRepGP will grow, providing researchers with a tool to identify candidate genes for future experiments. MCRiceRepGP is available as a web application (http://mcgplannotator.com/MCRiceRepGP/).

     
    more » « less
  4. Summary

    Alternative polyadenylation (APA) is a widespread post‐transcriptional mechanism that regulates gene expression throughmRNAmetabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativaL.). However, little is known about theAPA‐mediated regulation underlying the distinct characteristics between two major rice subspecies,indicaandjaponica. Using a poly(A)‐tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage betweenindicaandjaponica, and extensive differentiation inAPAprofiles was detected genome‐wide. Genes with subspecies‐specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance ofindicaand cold‐stress tolerance ofjaponica. In most tissues, differential usage ofAPAsites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000‐seed weight. In leaves of the booting stage,APAsite‐switching genes displayed global shortening of 3′ untranslated regions with increased expression inindicacompared withjaponica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis inindicathan injaponica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest thatAPAmay be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post‐transcriptional genetic basis underlying the divergence of rice traits.

     
    more » « less
  5. Abstract

    Grasslands of the central United States are expected to experience severe droughts and other climate extremes in the future, yet we know little about how these grasses will respond in terms of gene expression. We compared gene expression inAndropogon gerardiiandSorghastrum nutans, two closely related codominant C4grasses responsible for the majority of ecosystem function, usingRNA‐seq. We compared Trinity assemblies within each species to determine annotated functions of transcripts responding to drought. Subsequently, we compared homologous annotated gene‐groups across the two species using cross‐species meta‐level analysis and functional clustering based on key terms. The majority of variation was found between species, as opposed to between drought and watered treatments. However, there is evidence for differential responses;Andropogonallocated gene expression differently compared toSorghastrum, suggestingAndropogonfocuses on stress alleviation (such as oxygen radical scavenging) rather than prevention. In contrast,Sorghastrummay employ a drought avoidance strategy by modulating osmotic response, especially with hormonal regulation. We foundSorghastrumtended to be more sensitive within 10 key gene‐groups related to stress, abscisic acid and trichomes, suggesting gene expression may mechanistically parallel sensitivity at the physiological level. Our findings corroborate phenotypic and physiological differences in the field and may help explain the phenotypic mechanisms of these two species in the tallgrass prairie community under future drought scenarios.

     
    more » « less