Considerable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C 60 , C 70 and Sc 3 N@ I h C 80 with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen. To support our findings, Electrochemical Impedance Spectroscopy (EIS), double layer capacitance ( C dl ) and Mott–Schottky approximation were performed. Among all the functionalized fullerenes, DPySc 3 N@ I h C 80 exhibited a very low onset potential (−0.025 V vs. RHE) value, which is due to the influence of the inner cluster on the extra improvement of the electronic density states of the catalytic sites. For the first time, the covalent assembly of fullerenes and diazonium groups was used as an electron polarization strategy to build superior molecular HER catalytic systems.
more »
« less
Fullerenes as Key Components for Low‐Dimensional (Photo)electrocatalytic Nanohybrid Materials
Abstract An emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low‐dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene‐based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties. Recent advances in the design of fullerene‐based LD nanomaterials for (photo)electrocatalytic applications are emphasized. The fundamental relationship between the electronic structures and the catalytic functions of the heterostructures, including the role of the fullerenes, is addressed to provide an in‐depth understanding of these emerging materials at the molecular level.
more »
« less
- Award ID(s):
- 1801317
- PAR ID:
- 10197435
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 133
- Issue:
- 1
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 124-143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cerium oxide (CeO2) photo/electrocatalysts for energy storage and environmental applications have attracted considerable interest because of stable crystal structure, low toxicity/cost, superior chemical stability, stable redox (Ce3+/Ce4+) pairs, abundant oxygen defects, and capablility for intense interaction with other materials. However, the wide bandgap and poor conductivity lower the CeO2photo/electrocatalytic and energy storage performances. To overcome these limitations, various modification strategies (tuning morphology, doping or loading of metal nanoparticles, and heterostructures) have been applied for the improvement of photocatalytic (removal of organic contaminants from water/wastewater and H2production and CO2reduction reactions) efficiency, electrocatalytic (hydrogen/oxygen evolution reactions and CO2reduction reactions), and energy storage performances (supercapacitor) of CeO2‐based materials. Herein, the recent progress of CeO2‐based materials for electro(photo)catalysis and energy storage applications has been discussed. The challenges and possible direction of CeO2‐based materials for electro(photo)catalysis and energy storage applications have been emphasized. Furthermore, this comprehensive review is expected to advance the design of CeO2‐based materials and their applications in electro(photo)catalysis and energy.more » « less
-
The synthesis, characterization, and incorporation of open-cage [60]fullerene derivatives as electron-transporting materials (ETMs) in perovskite solar cells (PSCs) with an inverted planar (p-i-n) structure is reported. Following optical and electrochemical characterization of the open-cage fullerenes 2a–c, p-i-n PSCs with a indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/perovskite/fullerene/Ag structure were prepared. The devices obtained from 2a–b exhibit competitive power conversion efficiencies (PCEs) and improved open-circuit voltage (Voc) values (>1.0 V) in comparison to a reference cell based on phenyl-C61-butyric-acid methyl-ester (PC61BM). These results are rationalized in terms of a) the higher passivation ability of the open-cage fullerenes with respect to the other fullerenes, and b) a good overlap between the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of 2a–b and the conduction band of the perovskite.more » « less
-
Abstract Wide‐bandgap semiconductors (WBGs) are crucial building blocks of many modern electronic devices. However, there is significant room for improving the crystal quality, available choice of materials/heterostructures, scalability, and cost‐effectiveness of WBGs. In this regard, utilizing layered 2D materials in conjunction with WBG is emerging as a promising solution. This review presents recent advancements in the integration of WBGs and 2D materials, including fabrication techniques, mechanisms, devices, and novel functionalities. The properties of various WBGs and 2D materials, their integration techniques including epitaxial and nonepitaxial growth methods as well as transfer techniques, along with their advantages and challenges, are discussed. Additionally, devices and applications based on the WBG/2D heterostructures are introduced. Distinctive advantages of merging 2D materials with WBGs are described in detail, along with perspectives on strategies to overcome current challenges and unlock the unexplored potential of WBG/2D heterostructures.more » « less
-
High-performance hybrid graphene photodetectors were prepared with endohedral fullerenes deposited on graphene using electrophoretic methods for the first time. Endohedral Sc 3 N@C 80 , which acts as an electron acceptor, was used and the ensuing electronic and optoelectronic properties were measured. Another endohedral fullerene, La@C 82 , was also adsorbed on graphene, which acts as an electron donor. Upon optical illumination, for the Sc 3 N@C 80 –graphene hybrid, the photoinduced free holes are injected into graphene, increasing the hole carrier concentration in graphene, while the photoexcited electrons remain in Sc 3 N@C 80 ; this leads to a high photoresponsivity of ∼10 9 A W −1 , detectivity D of ∼10 15 Jones, and external quantum efficiency EQE ∼ 10 9 % for the Sc 3 N@C 80 –graphene hybrid. This is ∼10 times higher compared to other reports of quantum dot-graphene and few layer MoS 2 –graphene heterostructures. Similarly, for the La@C 82 –graphene hybrid, ∼ 10 8 A W −1 , D ∼ 10 14 Jones, and EQE ∼ 10 6 % were achieved, with electrons being injected into graphene. The exceptional performance gains achieved with both types of hybrid structures confirms the potential of endohedrals to dope graphene for high performance optoelectronic devices using a facile and scalable fabrication process.more » « less
An official website of the United States government
