skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geographic differences in body size distributions underlie food web connectance of tropical forest mammals
Abstract Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator–prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator–prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator–prey links relative to the number of possible predator–prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator–prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.  more » « less
Award ID(s):
2213568
PAR ID:
10496647
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines. 
    more » « less
  2. Dam, Hans G. (Ed.)
    Siphonophores (Cnidaria: Hydrozoa) are abundant and diverse gelatinous predators in open-ocean ecosystems. Due to limited access to the midwater, little is known about the diets of most deep-dwelling gelatinous species, which constrains our understanding of food-web structure and nutrient flow in these vast ecosystems. Visual gut-content methods can rarely identify soft-bodied rapidly-digested prey, while observations from submersibles often overlook small prey items. These methods have been differentially applied to shallow and deep siphonophore taxa, confounding habitat and methodological biases. DNA metabarcoding can be used to assess both shallow and deep species’ diets under a common methodological framework, since it can detect both small and gelatinous prey. We (1) further characterized the diets of open-ocean siphonophores using DNA metabarcoding, (2) compared the prey detected by visual and molecular methods to evaluate their technical biases, and (3) evaluated tentacle-based predictions of diet. To do this, we performed DNA metabarcoding analyses on the gut contents of 39 siphonophore species across depths to describe their diets, using six barcode regions along the 18S gene. Taxonomic identifications were assigned using public databases combined with local zooplankton sequences. We identified 55 unique prey items, including crustaceans, gelatinous animals, and fish across 47 siphonophore specimens in 24 species. We reported 29 novel predator-prey interactions, among them the first insights into the diets of nine siphonophore species, many of which were congruent with the dietary predictions based on tentilla morphology. Our analyses detected both small and gelatinous prey taxa underrepresented by visual methods in species from both shallow and deep habitats, indicating that siphonophores play similar trophic roles across depth habitats. We also reveal hidden links between siphonophores and filter-feeders near the base of the food web. This study expands our understanding of the ecological roles of siphonophores in the open ocean, their trophic roles within the ‘jelly-web’, and the importance of their diversity for nutrient flow and ecosystem functioning. Understanding these inconspicuous yet ubiquitous predator-prey interactions is critical to predict the impacts of climate change, overfishing, and conservation policies on oceanic ecosystems. 
    more » « less
  3. Abstract Food webs show the architecture of trophic relationships, revealing the biodiversity and species interactions in an ecosystem. Understanding which factors modulate the structure of food webs offers us the ability to predict how they will change when influential factors are altered. To date, most of the research about food webs has focused on species interactions whereas the influences of surrounding environments have been overlooked. Here, using network analysis, we identified how the structure of aquatic food webs varied across a range of geophysical conditions within a whole stream system. Within a headwater basin in the Cascade Mountain Range, Oregon, USA, macroinvertebrate and vertebrate composition was investigated at 18 sites. Predator–prey interactions were compiled based on existing literature and dietary analysis. Several structural network metrics were calculated for each food web. We show that the structure of food webs was predictable based on geophysical features at both local (i.e., slope) and broader (i.e., basin size) spatial extents. Increased omnivory, greater connectance, shorter path lengths, and ultimately greater complexity and resilience existed downstream compared to upstream in the stream network. Surprisingly, the variation in food web structure was not associated with geographic proximity. Structural metric values and abundance of omnivory suggest high levels of stability for these food webs. There is a predictable variation in the structure of food webs across the network that is influenced by both longitudinal position within streams and patchy discontinuities in habitat. Hence, findings illustrate that the slightly differing perspectives from the River Continuum Concept, Discontinuity Patch Dynamics, and Process Domains can be integrated and unified using food web networks. Our analyses extend ecologists’ understanding of the stability of food webs and are a vital step toward predicting how webs and communities may respond to both natural disturbances and current global environmental change. 
    more » « less
  4. Traits for prey acquisition form the phenotypic interface of predator–prey interactions. In venomous predators, morphological variation in venom delivery apparatus like fangs and stingers may be optimized for dispatching prey. Here, we determine how a single dimension of venom injection systems evolves in response to variation in the size, climatic conditions and dietary ecology of viperid snakes. We measured fang length in more than 1900 museum specimens representing 199 viper species (55% of recognized species). We find both phylogenetic signal and within-clade variation in relative fang length across vipers suggesting both general taxonomic trends and potential adaptive divergence in fang length. We recover positive evolutionary allometry and little static allometry in fang length. Proportionally longer fangs have evolved in larger species, which may facilitate venom injection in more voluminous prey. Finally, we leverage climatic and diet data to assess the global correlates of fang length. We find that models of fang length evolution are improved through the inclusion of both temperature and diet, particularly the extent to which diets are mammal-heavy diets. These findings demonstrate how adaptive variation can emerge among components of complex prey capture systems. 
    more » « less
  5. Comparative studies suggest remarkable similarities among food webs across habitats, including systematic changes in their structure with diversity and complexity (scale-dependence). However, historic aboveground terrestrial food webs (ATFWs) have coarsely grouped plants and insects such that these webs are generally small, and herbivory is disproportionately under-represented compared to vertebrate predator–prey interactions. Furthermore, terrestrial herbivory is thought to be structured by unique processes compared to size-structured feeding in other systems. Here, we present the richest ATFW to date, including approximately 580 000 feeding links among approximately 3800 taxonomic species, sourced from approximately 27 000 expert-vetted interaction records annotated as feeding upon one of six different resource types: leaves, flowers, seeds, wood, prey and carrion. By comparison to historical ATFWs and null ecological hypotheses, we show that our temperate forest web displays a potentially unique structure characterized by two properties: (i) a large fraction of carnivory interactions dominated by a small number of hyper-generalist, opportunistic bird and bat predators; and (ii) a smaller fraction of herbivory interactions dominated by a hyper-rich community of insects with variably sized but highly specific diets. We attribute our findings to the large-scale, even resolution of vertebrate, insect and plant guilds in our food web. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’. 
    more » « less