skip to main content


Title: Transition State Expansion: A Quantitative Model for Counterion Effects in Ionic Reactions
Ionic reactions are the most common reactions used in chemical synthesis. In relatively low dielectric constant solvents (e.g., dichloromethane, toluene), ions usually exist as ion pairs. Despite the importance of counterions, a quantitative description of how the paired ’counterion’ affects the reaction kinetic is still elusive. We introduce a general and quantitative model, namely transition-state expansion (TSE), that describes how the size of a counterion affects the transition- state structure and the kinetics of an ionic reaction. This model could rationalize the counterion effects in nucleophilic substitutions and gold-catalyzed enyne cycloisomerizations.  more » « less
Award ID(s):
1855972
NSF-PAR ID:
10197641
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
iScience
Volume:
23
ISSN:
2589-0042
Page Range / eLocation ID:
101593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect on spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule. 
    more » « less
  2. null (Ed.)
    Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion. 
    more » « less
  3. Abstract

    Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.

     
    more » « less
  4. Aryl chlorides (ArCl) or aryl fluorides (ArF) were used in polycondensation reactions to form poly(arylene ether sulfone)s (PAES). Interestingly, the kinetics of the ArF reaction fit a third-order rate law, which is attributed to the activation of the carbon–fluorine bond by two potassium cations (at least one bound to phenolate), which form a three-body complex. The ArCl monomer follows a second-order rate law, where a two-body complex forms at the initial state of the aromatic nucleophilic substitution (S N Ar) pathway. These metal cation-activated complexes act as intermediates during the attack by the nucleophile. This finding was reproduced with either the potassium or the sodium counterion (introduced via potassium carbonate or sodium carbonate). Through a combination of experimental analysis of reaction kinetics and computational calculations with density functional theory (DFT) methods, the present work extends the fundamental understanding of polycondensation mechanisms for two aryl halides and highlights the importance of the CX–metal interaction(s) in the S N Ar reaction, which is translational to other ion-activated substitution reactions. 
    more » « less
  5. null (Ed.)
    Conspectus By using transition metal catalysts, chemists have altered the “logic of chemical synthesis” by enabling the functionalization of carbon–hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C–H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C–H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation). Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson’s catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage. Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C–C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H2. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C–C and C–O bond-forming reactions, as well as C–C bond-cleaving processes. 
    more » « less