skip to main content

Title: Robotic reverberation mapping of the broad-line radio galaxy 3C 120
ABSTRACT We carried out photometric and spectroscopic observations of the well-studied broad-line radio galaxy 3C 120 with the Las Cumbres Observatory (LCO) global robotic telescope network from 2016 December to 2018 April as part of the LCO AGN Key Project on Reverberation Mapping of Accretion Flows. Here, we present both spectroscopic and photometric reverberation mapping results. We used the interpolated cross-correlation function to perform multiple-line lag measurements in 3C 120. We find the H γ, He ii λ4686, H β, and He i λ5876 lags of $\tau _{\text{cen}} = 18.8_{-1.0}^{+1.3}$, $2.7_{-0.8}^{+0.7}$, $21.2_{-1.0}^{+1.6}$, and $16.9_{-1.1}^{+0.9}$ d, respectively, relative to the V-band continuum. Using the measured lag and rms velocity width of the H β emission line, we determine the mass of the black hole for 3C 120 to be $M=(6.3^{+0.5}_{-0.3})\times 10^7\, (f/5.5)$ M⊙. Our black hole mass measurement is consistent with similar previous studies on 3C 120, but with small uncertainties. In addition, velocity-resolved lags in 3C 120 show a symmetric pattern across the H β line, 25 d at line centre decreasing to 17 d in the line wings at ±4000 km s−1. We also investigate the inter-band continuum lags in 3C 120 and find that they are generally consistent with τ ∝ λ4/3 as predicted from a geometrically thin, optically thick accretion disc. From the continuum lags, more » we measure the best-fitting value τ0 = 3.5 ± 0.2 d at $\lambda _{\rm 0} = 5477\, \mathring{\rm A}$. It implies a disc size a factor of 1.6 times larger than prediction from the standard disc model with L/LEdd = 0.4. This is consistent with previous studies in which larger than expected disc sizes were measured. « less
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1907290 1636626 1907208
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2910 to 2929
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is $4{{\ \rm per\ cent}}$.
  2. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.

  3. ABSTRACT We present the first intensive continuum reverberation mapping study of the high accretion-rate Seyfert galaxy Mrk 110. The source was monitored almost daily for more than 200 d with the Swift X-ray and ultraviolet (UV)/optical telescopes, supported by ground-based observations from Las Cumbres Observatory, the Liverpool Telescope, and the Zowada Observatory, thus extending the wavelength coverage to 9100 Å. Mrk 110 was found to be significantly variable at all wavebands. Analysis of the intraband lags reveals two different behaviours, depending on the time-scale. On time-scales shorter than 10 d the lags, relative to the shortest UV waveband (∼1928 Å), increase with increasing wavelength up to a maximum of ∼2 d lag for the longest waveband (∼9100 Å), consistent with the expectation from disc reverberation. On longer time-scales, however, the g-band lags the Swift BAT hard X-rays by ∼10 d, with the z-band lagging the g-band by a similar amount, which cannot be explained in terms of simple reprocessing from the accretion disc. We interpret this result as an interplay between the emission from the accretion disc and diffuse continuum radiation from the broad-line region.
  4. Abstract We present accretion-disk structure measurements from UV–optical reverberation mapping (RM) observations of a sample of eight quasars at 0.24 < z < 0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multiband optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping project sample with reliable black hole mass measurements from H β RM results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov Chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and Fe ii lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV–optical lags to the disk sizes inferred from optical–optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of themore »broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response.« less
  5. ABSTRACT We present a revised analysis of the photometric reverberation mapping campaign of the narrow-line Seyfert 1 galaxy PKS 0558 − 504 carried out with the Swift Observatory during 2008–2010. Previously, Gliozzi et al. (2013) found using the Discrete Correlation Function (DCF) method that the short-wavelength continuum variations lagged behind variations at longer wavelengths, the opposite of the trend expected for thermal reprocessing of X-rays by the accretion disc, and they interpreted their results as evidence against the reprocessing model. We carried out new DCF measurements that demonstrate that the inverted lag-wavelength relationship found by Gliozzi et al. resulted from their having interchanged the order of the driving and responding light curves when measuring the lags. To determine the inter-band lags and uncertainties more accurately, we carried out new measurements with four independent methods. These give consistent results showing time delays increasing as a function of wavelength, as expected for the disc reprocessing scenario. The slope of the re-analysed delay spectrum appears to be roughly compatible with the predicted τ ∝ λ4/3 relationship for reprocessing by an optically thick and geometrically thin accretion disc, although the data points exhibit a large scatter about the fitted power-law trend.