skip to main content

Title: Teaching virtual protein‐centric CUREs and UREs using computational tools
Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials ( to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the more » second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary. « less
Award ID(s):
Publication Date:
Journal Name:
Biochemistry and molecular biology education
Sponsoring Org:
National Science Foundation
More Like this
  1. Course-based undergraduate research experiences (CUREs) are well-documented as high-impact practices that can broaden participation and success in STEM. Drawing primarily from a community-of-practice theoretical framework, we previously developed an interdisciplinary CURE course (Science Bootcamp) for STEM majors focused entirely on the scientific process. Among first-year students, Science Bootcamp leads to psychosocial gains and increased retention. In the current study, we test whether an online Science Bootcamp also improves outcomes for STEM transfer students—a group that faces “transfer shock,” which can negatively impact GPA, psychosocial outcomes, and retention. To this end, we redesigned Science Bootcamp to a two-week course for STEMmore »transfer students to complete prior to beginning the fall semester at our four-year institution. Due to the COVID-19 pandemic, the course was conducted in an entirely virtual format, using primarily synchronous instruction. Despite the course being virtual, the diverse group of STEM majors worked in small groups to conduct rigorous, novel empirical research projects from start to finish, even presenting their results in a poster symposium. Assessment data confirm the compressed, online Science Bootcamp contains key CURE components—opportunities for collaboration, discovery/relevance, and iteration—and that students were highly satisfied with the course. Moreover, in line with our hypothesis, STEM transfer students who participated in the online Science Bootcamp experienced a range of psychosocial gains (e.g., belonging to STEM). In sum, these findings suggest our online Science Bootcamp promotes positive STEM outcomes, representing a highly flexible and affordable CURE that can be scaled for use at institutions of any size.« less
  2. At institutions with an emphasis on authentic research experiences as an integral part of the biology curriculum, COVID created a huge challenge for course instructors whose learning objectives were designed for such experiences. Moving such laboratory experiences online when remote learning became necessary has resulted in a new model for CUREs that utilizes free online databases to provide not only a novel research experience for students, but also the opportunity to engage in big data analysis. Cancer BioPortal (cBioPortal) is an open-access collective cancer research resource for storing and exploring clinical, genomic, proteomic, and transcriptomic data. cBioPortal eliminates the computationalmore »barrier of interpreting complex genomic data by providing easily understandable visualization that can be interpreted and translated into relevant biological insights. Because no prior computational knowledge is required, cBioPortal is an ideal educational tool for either in-person or distance learning environments. We developed a pedagogical approach, video tutorials, and data analysis workflows centered on using cBioPortal. Pedagogically, students develop an initial research outline that is continually updated and graded throughout the project. Progress during the project or course is assessed by a series of student presentations that are 5 to 15 minutes in length and are aimed at explaining the approach used in data acquisition, interpretation of the data, and relevance to the initial hypothesis. While cancer-specific, this analysis platform appeals to a wide range of classes and student interests. Further, the project has been successfully done both as an independent research experience and as part of a virtual class-based research project.« less
  3. Course-based undergraduate research experiences (CUREs) often involve a component where the outcomes of student research are broadly relevant to outside stakeholders. We wanted to see if building courses around an environmental justice issue relevant to the local community would impact students’ sense of civic engagement and appreciation of the relevance of scientific research to the community. In this quasi-experimental study, we assessed civic engagement and scientific identity gains ( N = 98) using pre- and post-semester surveys and open-ended interview responses in three different CUREs taught simultaneously at three different universities. All three CURES were focused on an environmental heavymore »metal pollution issue predominantly affecting African–Americans in Birmingham, Alabama. While we found increases in students’ sense of science efficacy and identity, our team was unable to detect meaningful changes in civic engagement levels, all of which were initially quite high. However, interviews suggested that students were motivated to do well in their research because the project was of interest to outside stakeholders. Our observations suggest that rather than directly influencing students’ civic engagement, the “broadly relevant” component of our CUREs engaged their pre-existing high levels of engagement to increase their engagement with the material, possibly influencing gains in science efficacy and science identity. Our observations are consistent with broader community relevance being an important component of CURE success, but do not support our initial hypothesis that CURE participation would influence students’ attitudes toward the civic importance of science.« less
  4. ABSTRACT Undergraduate research plays an important role in the development of science students. The two most common forms of undergraduate research are those in traditional settings (such as internships and research-for-credit in academic research labs) and course-based undergraduate research experiences (CUREs). Both of these settings offer many benefits to students, yet they have unique strengths and weaknesses that lead to trade-offs. Traditional undergraduate research experiences (UREs) offer the benefits of personalized mentorship and experience in a professional setting, which help build students’ professional communication skills, interest, and scientific identity. However, UREs can reach only a limited number of students. Onmore »the other end of the trade-off, CUREs offer research authenticity in a many-to-one classroom research environment that reaches more students. CUREs provide real research experience in a collaborative context, but CUREs are not yet necessarily equipping students with all of the experiences needed to transition into a research lab environment outside the classroom. We propose that CURE instructors can bridge trade-offs between UREs and CUREs by deliberately including learning goals and activities in CUREs that recreate the benefits of UREs, specifically in the areas of professional communication, scientific identify, and student interest. To help instructors implement this approach, we provide experience- and evidence-based guidance for student-centered, collaborative learning opportunities.« less
  5. In efforts to increase scientific literacy and enhance the preparation of learners to pursue careers in science, there are growing opportunities for students and teachers to engage in scientific research experiences, including course-based undergraduate research experiences (CUREs), undergraduate research experiences (UREs), and teacher research experiences (TREs). Prior literature reviews detail a variety of models, benefits, and challenges and call for the continued examination of program elements and associated impacts. This paper reports a comprehensive review of 307 papers published between 2007 and 2017 that include CURE, URE, and TRE programs, with a special focus on research experiences for K–12 teachers. A research-supported conceptualmore »model of science research experiences was used to develop a coding scheme, including participant demographics, theoretical frameworks, methodology, and reported outcomes. We summarize recent reports on program impacts and identify gaps or misalignments between goals and measured outcomes. The field of biology was the predominant scientific disciplinary focus. Findings suggest a lack of studies explicitly targeting 1) participation and outcomes related to learners from underrepresented populations, 2) a theoretical framework that guides program design and analysis, and, for TREs, 3) methods for translation of research experiences into K–12 instructional practices, and 4) measurement of impact on K–12 instructional practices.« less