This Work-in-Progress paper in the Research Category uses a retrospective mixed-methods study to better understand the factors that mediate learning of computational modeling by life scientists. Key stakeholders, including leading scientists, universities and funding agencies, have promoted computational modeling to enable life sciences research and improve the translation of genetic and molecular biology high- throughput data into clinical results. Software platforms to facilitate computational modeling by biologists who lack advanced mathematical or programming skills have had some success, but none has achieved widespread use among life scientists. Because computational modeling is a core engineering skill of value to other STEM fields, it is critical for engineering and computer science educators to consider how we help students from across STEM disciplines learn computational modeling. Currently we lack sufficient research on how best to help life scientists learn computational modeling. To address this gap, in 2017, we observed a short-format summer course designed for life scientists to learn computational modeling. The course used a simulation environment designed to lower programming barriers. We used semi-structured interviews to understand students' experiences while taking the course and in applying computational modeling after the course. We conducted interviews with graduate students and post- doctoral researchers who had completed the course. We also interviewed students who took the course between 2010 and 2013. Among these past attendees, we selected equal numbers of interview subjects who had and had not successfully published journal articles that incorporated computational modeling. This Work-in-Progress paper applies social cognitive theory to analyze the motivations of life scientists who seek training in computational modeling and their attitudes towards computational modeling. Additionally, we identify important social and environmental variables that influence successful application of computational modeling after course completion. The findings from this study may therefore help us educate biomedical and biological engineering students more effectively. Although this study focuses on life scientists, its findings can inform engineering and computer science education more broadly. Insights from this study may be especially useful in aiding incoming engineering and computer science students who do not have advanced mathematical or programming skills and in preparing undergraduate engineering students for collaborative work with life scientists.
more »
« less
Design and implementation of an asynchronous online course-based undergraduate research experience (CURE) in computational genomics
As genomics technologies advance, there is a growing demand for computational biologists trained for genomics analysis but instructors face significant hurdles in providing formal training in computer programming, statistics, and genomics to biology students. Fully online learners represent a significant and growing community that can contribute to meet this need, but they are frequently excluded from valuable research opportunities which mostly do not offer the flexibility they need. To address these opportunity gaps, we developed an asynchronous course-based undergraduate research experience (CURE) for computational genomics specifically for fully online biology students. We generated custom learning materials and leveraged remotely accessible computational tools to address 2 novel research questions over 2 iterations of the genomics CURE, one testing bioinformatics approaches and one mining cancer genomics data. Here, we present how the instructional team distributed analysis needed to address these questions between students over a 7.5-week CURE and provided concurrent training in biology and statistics, computer programming, and professional development. Scores from identical learning assessments administered before and after completion of each CURE showed significant learning gains across biology and coding course objectives. Open-response progress reports were submitted weekly and identified self-reported adaptive coping strategies for challenges encountered throughout the course. Progress reports identified problems that could be resolved through collaboration with instructors and peers via messaging platforms and virtual meetings. We implemented asynchronous communication using the Slack messaging platform and an asynchronous journal club where students discussed relevant publications using the Perusall social annotation platform. The online genomics CURE resulted in unanticipated positive outcomes, including students voluntarily discussing plans to continue research after the course. These outcomes underscore the effectiveness of this genomics CURE for scientific training, recruitment and student-mentor relationships, and student successes. Asynchronous genomics CUREs can contribute to a more skilled, diverse, and inclusive workforce for the advancement of biomedical science.
more »
« less
- Award ID(s):
- 2044096
- PAR ID:
- 10573536
- Editor(s):
- Palagi, Patricia M
- Publisher / Repository:
- PLoS Computational Biology
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 20
- Issue:
- 9
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1012384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Marshall, Pamela Ann (Ed.)ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.more » « less
-
Abstract The Bee the CURE is a novel course-based undergraduate research experience (CURE) that engages introductory biology students in DNA barcoding (DNA extraction, amplification, and bioinformatics) in partnership with the Tucson Bee Collaborative and the University of Arizona. The first iteration of this CURE taught at Pima Community College (PCC) occurred during the Fall 2020 semester in which the course was taught online and students focused on bioinformatics. Due to the online format, students were unable to participate directly in the wet-lab components (extraction and amplification) of the course. These were approximated with videos of the instructor performing the tasks. A qualitative case study of this semester built from student interviews found that students were able to form positive relationships with instructors and peer mentors but that the online format of the class posed some challenges to relationship formation. Students reported developing self-efficacy in bioinformatics skills while online lab participation disrupted student’s gaining “hands-on experiences” and seldom led to development of science self-efficacy in wet lab skills. Our findings from a study of a synchronous online CURE allowed us to characterize a context in which online learning posed a challenge and perhaps even a threat to research self-efficacy, especially regarding skill development and self-efficacy in “hands-on” areas, such as wet-bench research skills. Yet optimistically, our study highlights the potential of online community college learning environments to provide mastery experiences in online science contexts (e.g., bioinformatics) and opportunities for relationship building.more » « less
-
null (Ed.)This hands-on online workshop will introduce high school and college instructors to CSAwesome, a free Java curriculum and ebook at course.csawesome.org for the Advanced Placement (AP) Computer Science (CS) A course. This course is equivalent to a college-level CS1 course in Java. CSAwesome is an official College Board approved curriculum and professional development provider and has been widely adopted by AP high school teachers. The free ebook on the Runestone platform includes executable Java code examples and a variety of practice problems with immediate feedback: multiple-choice, fill-in-the-blank, write-code, mixed-up code (Parsons), and clickable code. It also includes coding challenges and support for pair programming. The curriculum is designed to help transition students from AP Computer Science Principles, which is equivalent to a CS0 course. Teacher lesson plans and resources are freely available. During this workshop, participants will register for the free ebook and work through example activities using object-oriented programming. If possible, participants will be divided into breakout groups according to their Java expertise. Participants will also learn how to create a custom course on the Runestone platform, create and grade assignments, use the instructor's dashboard to view student progress, contribute to the question bank, and use an interleaved spaced practice tool. We will also discuss online/hybrid teaching and engagement strategies.more » « less
-
Abstract BackgroundWhile laboratory practices have traditionally been conducted in-person, online asynchronous laboratory learning has been growing in popularity due to increased enrollments and the recent pandemic, creating opportunities for accessibility. In remote asynchronous learning environments, students have more autonomy to choose how they participate with other students in their laboratory classes. Communities of practice and self-efficacy may provide insights into why students are making their participation choices and how they are interacting with peers in asynchronous physics laboratory courses. ResultsIn this mixed methods, explanatory sequential study, students in an introductory physics remote asynchronous laboratory (N = 272) were surveyed about their social learning perceptions and their physics laboratory self-efficacy. Three groups of students were identified based upon their self-reported participation level of communication with peers in asynchronous courses: (1)contributors, who communicated with peers via instant messaging software and posted comments; (2)lurkers, who read discussions on instant messaging software without posting comments; and (3)outsiders, who neither read nor posted comments to peer discussions. Analysis of variance with post hoc Tukey tests showed significant differences in social learning perceptions among contributors, lurkers, and outsiders, with a large effect size, and differences between contributing and lurking students’ self-efficacy, with a small effect size. Qualitative findings from open-ended survey responses indicated contributors felt the structure of the learning environment, or their feeling of connectedness with other students, facilitated their desire to contribute. Many lurkers felt they could get what they needed through vicarious learning, and many expressed their lack of confidence to post relevant, accurate comments. Outsiders felt they did not have to, did not want to, or could not connect with other students. ConclusionsWhile the classroom laboratory traditionally requires all students to participate in the learning process through active socialization with other students, students in a remote asynchronous laboratory may still gain the benefits of participation through lurking. Instructors may consider lurking in an online or remote science laboratory as a legitimate form of participation and engagement.more » « less
An official website of the United States government

