skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mathematical models for the effect of anti-vascular endothelial growth factor on visual acuity
The standard of care treatment for neovascular age-related macular degeneration, delivered as ocular injection, is based on anti-vascular endothelial growth factor (anti-VEGF). The course of treatment may need to be modified quickly for certain patients based on their response. Models that track both the concentration and the response to an anti-VEGF treatment are presented. The specific focus is to assess the existence of analytical solutions for the different types of models. Both an ODE-based model and a map-based model illustrate the dependence of the solution on various biological parameters and allow the measurement of patient-specific parameters from experimental data. A PDE-based model incorporates diffusive effects. The results are consistent with observed values, and could provide a framework for practitioners to understand the effect of the therapy on the progression of the disease in both responsive and non-responsive patients.  more » « less
Award ID(s):
1916232
PAR ID:
10197902
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of mathematical biology
ISSN:
0303-6812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Lung volume reduction surgery (LVRS) and medical therapy are 2 available treatment options in dealing with severe emphysema, which is a chronic lung disease. However, or there are currently limited guidelines on the timing of LVRS for patients with different characteristics. Objective The objective of this study is to assess the timing of receiving LVRS in terms of patient outcomes, taking into consideration a patient’s characteristics. Methods A finite-horizon Markov decision process model for patients with severe emphysema was developed to determine the short-term (5 y) and long-term timing of emphysema treatment. Maximizing the expected life expectancy, expected quality-adjusted life-years, and total expected cost of each treatment option were applied as the objective functions of the model. To estimate parameters in the model, the data provided by the National Emphysema Treatment Trial were used. Results The results indicate that the treatment timing strategy for patients with upper-lobe predominant emphysema is to receive LVRS regardless of their specific characteristics. However, for patients with non–upper-lobe–predominant emphysema, the optimal strategy depends on the age, maximum workload level, and forced expiratory volume in 1 second level. Conclusion This study demonstrates the utilization of clinical trial data to gain insights into the timing of surgical treatment for patients with emphysema, considering patient age, observable health condition, and location of emphysema. Highlights Both short-term and long-term Markov decision process models were developed to assess the timing of receiving lung volume reduction surgery in patients with severe emphysema. How clinical trial data can be used to estimate the parameters and obtain short-term results from the Markov decision process model is demonstrated. The results provide insights into the timing of receiving lung volume reduction surgery as a function of a patient’s characteristics, including age, emphysema location, maximum workload, and forced expiratory volume in 1 second level. 
    more » « less
  2. Abstract The PD‐1 immune checkpoint‐based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials, mainly due to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti‐PD‐1 resistance, an in silico model is established to quantitatively describe the biological rationale of critical GBM‐immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor‐associated macrophage (TAM) mediated immunosuppression. Such an in silico experimentation and predictive model, based on the in vitro microfluidic chip‐measured end‐point data and patient‐specific immunological characteristics, allows for a comprehensive and dynamic analysis of multiple TAM‐associated immunosuppression mechanisms against the anti‐PD‐1 immunotherapy. The computational model demonstrates that the TAM‐associated immunosuppression varies in severity across different GBM subtypes, which results in distinct tumor responses. The prediction results indicate that a combination therapy by co‐targeting of PD‐1 checkpoint and TAM‐associated CSF‐1R signaling can enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti‐PD‐1 therapy. The development of a patient‐specific in silico–in vitro GBM model will help navigate and personalize immunotherapies for GBM patients. 
    more » « less
  3. Precision medicine that enables personalized treatment decision support has become an increasingly important research topic in chronic disease care. The main challenges in designing a treatment algorithm include modeling individual disease progression dynamics and designing adaptive treatment selection strategy. This study aims to develop an adaptive treatment selection framework tailored to an individual patient’s disease progression pattern and treatment response. We propose a Partially Observable Collaborative Model (POCM) to capture the individual variations in a heterogeneous population and optimize treatment outcomes in three stages. The POCM first infers the disease progression models by subgroup patterns using population data in stage one and then fine-tunes the models for individual patients with a small number of treatment trials in stage two. In stage three, we show how the treatment policies based on the Partially Observable Markov Decision Process (POMDP) can be tailored to individual patients by utilizing the disease models learned from the POCM. Using a simulated population of chronic depression patients, we show that the POCM can more accurately estimate the personal disease progression than the traditional method of solving a hidden Markov model. We also compare the POMDP treatment policies with other heuristic policies and demonstrate that the POCM-based policies give the highest net monetary benefits in majority of parameter settings. To conclude, the POCM method is a promising approach to model the chronic disease progression process and recommend a personalized treatment plan for individual patients in a heterogeneous population. 
    more » « less
  4. Jenner, Adrianne (Ed.)
    With the recent approval by the FDA of the first disease-modifying drug for Alzheimer’s Disease (AD), personalized medicine will be increasingly important for appropriate management and counseling of patients with AD and those at risk. The growing availability of clinical biomarker data and data-driven computational modeling techniques provide an opportunity for new approaches to individualized AD therapeutic planning. In this paper, we develop a new mathematical model, based on AD cognitive, cerebrospinal fluid (CSF) and MRI biomarkers, to provide a personalized optimal treatment plan for individuals. This model is parameterized by biomarker data from the AD Neuroimaging Initiative (ADNI) cohort, a large multi-institutional database monitoring the natural history of subjects with AD and mild cognitive impairment (MCI). Optimal control theory is used to incorporate time-varying treatment controls and side-effects into the model, based on recent clinical trial data, to provide a personalized treatment regimen with anti-amyloid-beta therapy. In-silico treatment studies were conducted on the approved treatment, aducanumab, as well as on another promising anti-amyloid-beta therapy under evaluation, donanemab. Clinical trial simulations were conducted over both short-term (78 weeks) and long-term (10 years) periods with low-dose (6 mg/kg) and high-dose (10 mg/kg) regimens for aducanumab, and a single-dose regimen (1400 mg) for donanemab. Results confirm those of actual clinical trials showing a large and sustained effect of both aducanumab and donanemab on amyloid beta clearance. The effect on slowing cognitive decline was modest for both treatments, but greater for donanemab. This optimal treatment computational modeling framework can be applied to other single and combination treatments for both prediction and optimization, as well as incorporate new clinical trial data as it becomes available. 
    more » « less
  5. We present a mechanistic mathematical model of immune checkpoint inhibitor therapy to address the oncological need for early, broadly applicable readouts (biomarkers) of patient response to immunotherapy. The model is built upon the complex biological and physical interactions between the immune system and cancer, and is informed using only standard-of-care CT. We have retrospectively applied the model to 245 patients from multiple clinical trials treated with anti–CTLA-4 or anti–PD-1/PD-L1 antibodies. We found that model parameters distinctly identified patients with common ( n = 18) and rare ( n = 10) malignancy types who benefited and did not benefit from these monotherapies with accuracy as high as 88% at first restaging (median 53 days). Further, the parameters successfully differentiated pseudo-progression from true progression, providing previously unidentified insights into the unique biophysical characteristics of pseudo-progression. Our mathematical model offers a clinically relevant tool for personalized oncology and for engineering immunotherapy regimens. 
    more » « less