skip to main content


Title: Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy
We present a mechanistic mathematical model of immune checkpoint inhibitor therapy to address the oncological need for early, broadly applicable readouts (biomarkers) of patient response to immunotherapy. The model is built upon the complex biological and physical interactions between the immune system and cancer, and is informed using only standard-of-care CT. We have retrospectively applied the model to 245 patients from multiple clinical trials treated with anti–CTLA-4 or anti–PD-1/PD-L1 antibodies. We found that model parameters distinctly identified patients with common ( n = 18) and rare ( n = 10) malignancy types who benefited and did not benefit from these monotherapies with accuracy as high as 88% at first restaging (median 53 days). Further, the parameters successfully differentiated pseudo-progression from true progression, providing previously unidentified insights into the unique biophysical characteristics of pseudo-progression. Our mathematical model offers a clinically relevant tool for personalized oncology and for engineering immunotherapy regimens.  more » « less
Award ID(s):
1930583
NSF-PAR ID:
10182687
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
18
ISSN:
2375-2548
Page Range / eLocation ID:
eaay6298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The PD‐1 immune checkpoint‐based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials, mainly due to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti‐PD‐1 resistance, an in silico model is established to quantitatively describe the biological rationale of critical GBM‐immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor‐associated macrophage (TAM) mediated immunosuppression. Such an in silico experimentation and predictive model, based on the in vitro microfluidic chip‐measured end‐point data and patient‐specific immunological characteristics, allows for a comprehensive and dynamic analysis of multiple TAM‐associated immunosuppression mechanisms against the anti‐PD‐1 immunotherapy. The computational model demonstrates that the TAM‐associated immunosuppression varies in severity across different GBM subtypes, which results in distinct tumor responses. The prediction results indicate that a combination therapy by co‐targeting of PD‐1 checkpoint and TAM‐associated CSF‐1R signaling can enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti‐PD‐1 therapy. The development of a patient‐specific in silicoin vitro GBM model will help navigate and personalize immunotherapies for GBM patients.

     
    more » « less
  2. null (Ed.)
    Background Despite approval of immunotherapy for a wide range of cancers, the majority of patients fail to respond to immunotherapy or relapse following initial response. These failures may be attributed to immunosuppressive mechanisms co-opted by tumor cells. However, it is challenging to use conventional methods to systematically evaluate the potential of tumor intrinsic factors to act as immune regulators in patients with cancer. Methods To identify immunosuppressive mechanisms in non-responders to cancer immunotherapy in an unbiased manner, we performed genome-wide CRISPR immune screens and integrated our results with multi-omics clinical data to evaluate the role of tumor intrinsic factors in regulating two rate-limiting steps of cancer immunotherapy, namely, T cell tumor infiltration and T cell-mediated tumor killing. Results Our studies revealed two distinct types of immune resistance regulators and demonstrated their potential as therapeutic targets to improve the efficacy of immunotherapy. Among them, PRMT1 and RIPK1 were identified as a dual immune resistance regulator and a cytotoxicity resistance regulator, respectively. Although the magnitude varied between different types of immunotherapy, genetically targeting PRMT1 and RIPK1 sensitized tumors to T-cell killing and anti-PD-1/OX40 treatment. Interestingly, a RIPK1-specific inhibitor enhanced the antitumor activity of T cell-based and anti-OX40 therapy, despite limited impact on T cell tumor infiltration. Conclusions Collectively, the data provide a rich resource of novel targets for rational immuno-oncology combinations. 
    more » « less
  3. null (Ed.)
    Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific ‘GBM-on-a-Chip’ microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients. 
    more » « less
  4. Abstract Background

    Brain metastases are one of the most common intracranial neoplasms. Increasing evidence have indicated that systemic immunotherapy may provide long‐term benefits for brain metastases. Herein, we presented the results of an immune oncology panel RNA sequencing platform for patients with brain metastases from different primary sites.

    Methods

    We investigated 25 samples of human brain metastases from lung cancer (n = 12), breast cancer (n = 6), and colorectal cancer (n = 7). Besides, 13 paired samples of adjacent noncancerous brain tissue (10 from patients with lung cancer and 3 from patients with breast cancer) were collected as controls. By comparing the brain metastases and paired samples of adjacent noncancerous brain tissue from 13 patients, we detected three upregulated and six downregulated genes, representing the malignant properties of cancer cells and increased immune infiltration in the microenvironment. Next, we profiled the immune‐related genes in brain metastases from three primary cancer types.

    Results

    A group of genes were significantly overexpressed in the microenvironment of brain metastases from lung cancer, covering the checkpoint pathways, lymphocyte infiltration, and TCR‐coexpression. Especially, immune checkpoint molecules, PD‐L1, PD‐L2, and IDO1 were expressed at higher levels in brain metastases from lung cancer than those from the other two cancer types.

    Conclusions

    This study presents an immune landscape of brain metastases from different cancer types. With high RNA expression levels of PD‐1/PD‐L1 axis and immune infiltration in brain metastases, it would be worthwhile to explore the efficacy of immune checkpoint blockade for lung cancer patients with intracranial metastases.

     
    more » « less
  5. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovine model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments. 
    more » « less