- Award ID(s):
- 1707419
- Publication Date:
- NSF-PAR ID:
- 10197903
- Journal Name:
- Proceedings of the International Astronomical Union
- Volume:
- 15
- Issue:
- S350
- Page Range or eLocation-ID:
- 231 to 236
- ISSN:
- 1743-9213
- Sponsoring Org:
- National Science Foundation
More Like this
-
CTCV J2056–3014 is a nearby cataclysmic variable with an orbital period of approximately 1.76 h at a distance of about 853 light-years from the Earth. Its recently reported X-ray properties suggest that J2056–3014 is an unusual accretion-powered intermediate polar that harbors a fast-spinning white dwarf (WD) with a spin period of 29.6 s. The low X-ray luminosity and the relatively modest accretion rate per unit area suggest that the shock is not occurring near the WD surface. It has been argued that, under these conditions, the maximum temperature of the shock cannot be directly used to determine the mass of the WD (which, under the abovementioned assumptions, would be around 0.46 M ⊙ ). Here, we explore the stability of this rapidly rotating WD using a modern equation of state (EoS) that accounts for electron–ion, electron–electron, and ion–ion interactions. For this EoS, we determine the mass density thresholds for the onset of pycnonuclear fusion reactions and study the impact of microscopic stability and rapid rotation on the structure and stability of WDs, considering them with helium, carbon, oxygen, and neon. From this analysis, we obtain a minimum mass for CTCV J2056–3014 of 0.56 M ⊙ and a maximum mass ofmore »
-
Abstract The origin of the bright and hard X-ray emission flux among the
γ Cas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγ Cas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγ Cas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγ Cas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving whitemore » -
Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be aWD(double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion (Branch et al. 1995; Nomoto et al. 2003; Wang & Han 2012). Light curves and spectra of the explosion look similar because a ’stellar amnesia’ (H¨oflich et al. 2006). Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds (Webbink 1984; Isern et al. 2011), b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards (Nomoto 1982; Hoeflich & Khokhlov 1996; Kromer et al. 2010); c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems (Whelan & Iben 1973; Piersanti et al. 2003). Simulations of the explosionsmore »
-
Abstract Accurate helium White Dwarf (DB) masses are critical for understanding the star’s evolution. DB masses derived from the spectroscopic and photometric methods are inconsistent. Photometric masses agree better with currently accepted DB evolutionary theories and are mostly consistent across a large range of surface temperatures. Spectroscopic masses rely on untested He
i Stark line-shape and Van der Waals broadening predictions, show unexpected surface temperature trends, and are thus viewed as less reliable. To test this conclusion, we present in this paper detailed Hei Stark line-shape measurements at conditions relevant to DB atmospheres (T electron≈12,000–17,000 K,n electron≈ 1017cm−3). We use X-rays from Sandia National Laboratories’Z -machine to create a uniform ≈120 mm long hydrogen–helium mixture plasma. Van der Waals broadening is negligible at our experimental conditions, allowing us to measure Hei Stark profiles only. Hβ , which has been well-studied in our platform and elsewhere, serves as then ediagnostic. We find that Hei Stark broadening models used in DB analyses are accurate within errors at tested conditions. It therefore seems unlikely that line-shape models are solely responsible for the observed spectroscopic mass trends. Our results should motivate the WD community to further scrutinize the validity of other spectroscopic and photometric input parameters, like atmospheric structure assumptions and convection corrections. Thesemore » -
We present a multiline survey of the interstellar medium (ISM) in two z > 6 quasar host galaxies, PJ231−20 ( z = 6.59) and PJ308−21 ( z = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up = 7, 10, 15, 16), H 2 O 3 12 − 2 21 , 3 21 − 3 12 , 3 03 − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »