skip to main content


Title: Spontaneous selective deposition of iron oxide nanoparticles on graphite as model catalysts
Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp 3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe 3+ oxidation state and two different oxygen species, Fe–O and Fe–OH/Fe–OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst.  more » « less
Award ID(s):
1725818
NSF-PAR ID:
10197924
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
1
Issue:
12
ISSN:
2516-0230
Page Range / eLocation ID:
4729 to 4744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sodium‐metal batteries (SMBs) are considered as a compliment to lithium‐metal batteries for next‐generation high‐energy batteries because of their low cost and the abundance of sodium (Na). Herein, a 3D nanostructured porous carbon particle containing carbon‐shell‐coated Fe nanoparticles (PC‐CFe) is employed as a highly reversible Na‐metal host. PC‐CFe has a unique 3D hierarchy based on sub‐micrometer‐sized carbon particles, ordered open channels, and evenly distributed carbon‐coated Fe nanoparticles (CFe) on the surface. PC‐CFe achieves high reversibility of Na plating/stripping processes over 500 cycles with a Coulombic efficiency of 99.6% at 10 mA cm–2with 10 mAh cm–2in Na//Cu asymmetric cells, as well as over 14 400 cycles at 60 mA cm–2in Na//Na symmetric cells. Density functional theory calculations reveal that the superior cycling performance of PC‐CFe stems from the stronger adsorption of Na on the surface of the CFe, providing initial nucleation sites more favorable to Na deposition. Moreover, the full cell with a PC‐CFe host without Na metal and a high‐loading Na3V2(PO4)3cathode (10 mg cm–2) maintains a high capacity of 103 mAh g–1at 1 mA cm–2even after 100 cycles, demonstrating the operation of anode‐free SMBs.

     
    more » « less
  2. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. 
    more » « less
  3. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  4. The kinetics of model contaminant 4-chloronitrobenzene (4-ClNB) reduction by Fe( ii ) in aqueous suspensions containing either or both goethite (α-FeOOH) nanoparticles and kaolinite (Al 2 Si 2 O 5 (OH) 4 ) were quantified to elucidate the effects of nonreactive clay minerals on the attenuation of nitroaromatic groundwater contaminants by iron oxide nanoparticles. Increasing the amount of kaolinite in the presence of goethite decreased the reduction rate of 4-ClNB and competitive Fe( ii ) adsorption on kaolinite occurred. Cryogenic transmission and scanning electron microscopy (cryo-TEM and cryo-SEM) images did not reveal significant loss of accessible reactive surface area as a result of heteroaggregation. Sequential-spike batch reactors revealed that in the presence of kaolinite, 4-ClNB reduction rate decreased by more than a factor of three with extended reaction as a result of kaolinite dissolution and subsequent incorporation of Al and Si in goethite or on the goethite surface. The reactive sites residing on the {110} faces were comparatively more reactive in the presence of a large loading of kaolinite, resulting in shorter and wider goethite particles after reaction. These results elucidate the mechanisms by which nonreactive clays affect the reactions of Fe( ii )/iron oxides in groundwater systems and indicate that nonreactive clays are not passive components. 
    more » « less
  5. null (Ed.)
    Particle nucleation and growth of crystalline manganese oxide nanoparticles was examined in a complementary experimental and modelling study. Gas-to-particle conversion occurred in a flame-assisted chemical vapor deposition process whereby a premixed stagnation flame drove the high-temperature synthesis. The structure of the stagnation flame was computed using pseudo one-dimensional and axisymmetric two-dimensional methods to assess the accuracy of using a faster similarity-based calculation for flame-deposition design. The pseudo one-dimensional computation performs reasonably well for the narrow aspect ratio stagnation flow currently studied as evidenced by reasonable agreement between the measured flame position and both computational methods. Manganese oxide nanoparticles having II, II–III, III or IV oxidation states were observed depending on the flame conditions. These observations may be explained by size-dependent equilibria between nano-scale manganese oxide and surrounding gas-phase oxygen. Local equilibrium was assessed during the particle temperature–oxygen–time history to gain insight into oxide formation in the flame. Analysis of the saturation ratio for formation of condensed MnO in the flame indicates that nucleation may be limited by a thermodynamic barrier. This nucleation mechanism is supported by measured particle sizes smaller than what would be expected from a coagulation limited growth process. Nanocrystalline MnO, reported here for the first time by flame synthesis, was obtained in oxygen lean flames. MnO 2 is the phase predicted to be thermally stable as the particles approach the deposition surface, yet other metastable oxide phases were produced in many of the flames examined. In fact, MnO 2 was only observed in the smallest particle size conditions which may indicate that high cooling rates limit phase equilibrium to less massive particles. 
    more » « less