skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of nanocrystalline manganese oxide in flames: oxide phase governed by classical nucleation and size-dependent equilibria
Particle nucleation and growth of crystalline manganese oxide nanoparticles was examined in a complementary experimental and modelling study. Gas-to-particle conversion occurred in a flame-assisted chemical vapor deposition process whereby a premixed stagnation flame drove the high-temperature synthesis. The structure of the stagnation flame was computed using pseudo one-dimensional and axisymmetric two-dimensional methods to assess the accuracy of using a faster similarity-based calculation for flame-deposition design. The pseudo one-dimensional computation performs reasonably well for the narrow aspect ratio stagnation flow currently studied as evidenced by reasonable agreement between the measured flame position and both computational methods. Manganese oxide nanoparticles having II, II–III, III or IV oxidation states were observed depending on the flame conditions. These observations may be explained by size-dependent equilibria between nano-scale manganese oxide and surrounding gas-phase oxygen. Local equilibrium was assessed during the particle temperature–oxygen–time history to gain insight into oxide formation in the flame. Analysis of the saturation ratio for formation of condensed MnO in the flame indicates that nucleation may be limited by a thermodynamic barrier. This nucleation mechanism is supported by measured particle sizes smaller than what would be expected from a coagulation limited growth process. Nanocrystalline MnO, reported here for the first time by flame synthesis, was obtained in oxygen lean flames. MnO 2 is the phase predicted to be thermally stable as the particles approach the deposition surface, yet other metastable oxide phases were produced in many of the flames examined. In fact, MnO 2 was only observed in the smallest particle size conditions which may indicate that high cooling rates limit phase equilibrium to less massive particles.  more » « less
Award ID(s):
1841357
PAR ID:
10207765
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CrystEngComm
Volume:
22
Issue:
33
ISSN:
1466-8033
Page Range / eLocation ID:
5509 to 5521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Water oxidation and concomitant dioxygen formation by the manganese-calcium cluster of oxygenic photosynthesis has shaped the biosphere, atmosphere, and geosphere. It has been hypothesized that at an early stage of evolution, before photosynthetic water oxidation became prominent, light-driven formation of manganese oxides from dissolved Mn(2+) ions may have played a key role in bioenergetics and possibly facilitated early geological manganese deposits. Here we report the biochemical evidence for the ability of photosystems to form extended manganese oxide particles. The photochemical redox processes in spinach photosystem-II particles devoid of the manganese-calcium cluster are tracked by visible-light and X-ray spectroscopy. Oxidation of dissolved manganese ions results in high-valent Mn(III,IV)-oxide nanoparticles of the birnessite type bound to photosystem II, with 50-100 manganese ions per photosystem. Having shown that even today’s photosystem II can form birnessite-type oxide particles efficiently, we propose an evolutionary scenario, which involves manganese-oxide production by ancestral photosystems, later followed by down-sizing of protein-bound manganese-oxide nanoparticles to finally yield today’s catalyst of photosynthetic water oxidation. 
    more » « less
  2. Soot formation is quantified in detail (volume fraction, particle size, number concentration, and light emissivity dispersion exponent) in a series of partially premixed counterflow flames of ethylene at equivalence ratios equal to 6.5, 5.0, and 4.0, and with maximum temperature spanning approximately 200 K. The focus is to investigate the effect of peak temperature and equivalence ratio on soot formation while maintaining constant global strain and stoichiometric mixture fraction. Oxygen is progressively displaced from the oxidizer to the fuel stream of a diffusion flame to stabilize partially premixed flames of decreasing, showing a double-flame structure consisting of a rich premixed flame component stabilized on the fuel side of the stagnation plane and a diffusion flame component stabilized on the oxidizer side. Soot is detected in the region sandwiched between the two flame components, is formed in both of them, and is convected away radially at the Particle Stagnation Plane (PSP). At fixed , raising the peak temperature invariably raises the soot volume fraction throughout the probed region. Vice versa, at fixed peak temperature, lowering the equivalence ratio causes the premixed flame component to shift away from the diffusion flame component, with the consequent broadening of the soot forming region and an increase in both soot volume fraction as well as soot particle sizes through an enhancement of surface growth. Detailed probing of the region in the vicinity of the PSP offers evidence of soot oxidation from molecular oxygen. Furthermore, when the maximum temperature is sufficiently low, the net soot production rate turns negative because surface oxidation overwhelms surface growth. Comparing the soot number production rate inferred from experiments to the dimerization rate of benzene, naphthalene, and pyrene reveals that only the smallest aromatics are present in flames at sufficiently large concentrations to account for soot nucleation. This observation applies to both the diffusion flame and the premixed flame components and confirms previous findings in strictly diffusion flames. 
    more » « less
  3. Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp 3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe 3+ oxidation state and two different oxygen species, Fe–O and Fe–OH/Fe–OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst. 
    more » « less
  4. Manganese dioxide (MnO 2 ) with different crystal structures has been widely investigated as the cathode material for Zn-ion batteries, among which spinel λ -MnO 2 is yet rarely reported because Zn-ion intercalation in spinel lattice is speculated to be limited by the narrow three-dimensional tunnels. In this work, we demonstrate that Zn-ion insertion in spinel lattice can be enhanced by reducing particle size and elucidate an intriguing electrochemical reaction mechanism dependent on particle size. Specifically, λ -MnO 2 nanoparticles (NPs, ~80 nm) deliver a high capacity of 250 mAh/g at 20 mA/g due to large surface area and solid-solution type phase transition pathway. Meanwhile, severe water-induced Mn dissolution leads to the poor cycling stability of NPs. In contrast, micron-sized λ -MnO 2 particles (MPs, ~0.9  μ m) unexpectedly undergo an activation process with the capacity continuously increasing over the first 50 cycles, which can be attributed to the formation of amorphous MnO x nanosheets in the open interstitial space of the MP electrode. By adding MnSO 4 to the electrolyte, Mn dissolution can be suppressed, leading to significant improvement in the cycling performance of NPs, with a capacity of 115 mAh/g retained at 1 A/g for over 500 cycles. This work pinpoints the distinctive impacts of the particle size on the reaction mechanism and cathode performance in aqueous Zn-ion batteries. 
    more » « less
  5. We perform spatially resolved measurements of light scattering of soot in atmospheric pressure counterflow diffusion flames to complement previously reported data on soot pyrometry, temperature and gaseous species up to three-ring polycyclic aromatic hydrocarbons (PAHs). We compare two flames: a baseline ethylene flame and a toluene-seeded flame in which an aliquot of ethylene in the feed stream is replaced with 3500 ppm of pre-vaporized toluene. The goal is twofold: directly adding an aromatic fuel to bypass the formation of the first aromatic ring, widely regarded as the main bottleneck to soot formation from aliphatic fuels, and assessing the impact of a common component of surrogates of transportation fuels on soot formation. The composition of the fuel and oxidizer streams are adjusted to ensure invariance of the temperature-time history, thereby decoupling the chemical effects of the fuel substitution from other factors. The doping approach enables the comparison of very similar flames with respect to combustion products, radicals and critical precursors to aromatic formation (C2–C5 species), in addition to the temperature-time history. Doping with toluene boosts the aromatic content and soot volume fraction relative to the baseline ethylene flame, but, surprisingly, the soot number density and nucleation rate are affected modestly. As a result, the observed difference in volume fraction in the toluene-doped flame is reflective of larger initial particles at the onset of soot nucleation. The nucleation rate when soot first appears near the flame is of the same order as the dimerization rate of single-ring aromatics, in contrast with the expectation that the dimerization of larger PAHs initiates the process. Even though in and of itself nucleation contributes modestly to the overall soot loading, nucleation conditions the overall soot loading by affecting the size of the initial particle, which ultimately affects subsequent growth. 
    more » « less