skip to main content

Title: Formation of nanocrystalline manganese oxide in flames: oxide phase governed by classical nucleation and size-dependent equilibria
Particle nucleation and growth of crystalline manganese oxide nanoparticles was examined in a complementary experimental and modelling study. Gas-to-particle conversion occurred in a flame-assisted chemical vapor deposition process whereby a premixed stagnation flame drove the high-temperature synthesis. The structure of the stagnation flame was computed using pseudo one-dimensional and axisymmetric two-dimensional methods to assess the accuracy of using a faster similarity-based calculation for flame-deposition design. The pseudo one-dimensional computation performs reasonably well for the narrow aspect ratio stagnation flow currently studied as evidenced by reasonable agreement between the measured flame position and both computational methods. Manganese oxide nanoparticles having II, II–III, III or IV oxidation states were observed depending on the flame conditions. These observations may be explained by size-dependent equilibria between nano-scale manganese oxide and surrounding gas-phase oxygen. Local equilibrium was assessed during the particle temperature–oxygen–time history to gain insight into oxide formation in the flame. Analysis of the saturation ratio for formation of condensed MnO in the flame indicates that nucleation may be limited by a thermodynamic barrier. This nucleation mechanism is supported by measured particle sizes smaller than what would be expected from a coagulation limited growth process. Nanocrystalline MnO, reported here for the first time by more » flame synthesis, was obtained in oxygen lean flames. MnO 2 is the phase predicted to be thermally stable as the particles approach the deposition surface, yet other metastable oxide phases were produced in many of the flames examined. In fact, MnO 2 was only observed in the smallest particle size conditions which may indicate that high cooling rates limit phase equilibrium to less massive particles. « less
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
5509 to 5521
Sponsoring Org:
National Science Foundation
More Like this
  1. Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleatemore »and coalesce at 400 °C. AFM revealed that the particles on the sp 3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe 3+ oxidation state and two different oxygen species, Fe–O and Fe–OH/Fe–OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst.« less
  2. Manganese dioxide (MnO 2 ) with different crystal structures has been widely investigated as the cathode material for Zn-ion batteries, among which spinel λ -MnO 2 is yet rarely reported because Zn-ion intercalation in spinel lattice is speculated to be limited by the narrow three-dimensional tunnels. In this work, we demonstrate that Zn-ion insertion in spinel lattice can be enhanced by reducing particle size and elucidate an intriguing electrochemical reaction mechanism dependent on particle size. Specifically, λ -MnO 2 nanoparticles (NPs, ~80 nm) deliver a high capacity of 250 mAh/g at 20 mA/g due to large surface area and solid-solution type phase transitionmore »pathway. Meanwhile, severe water-induced Mn dissolution leads to the poor cycling stability of NPs. In contrast, micron-sized λ -MnO 2 particles (MPs, ~0.9  μ m) unexpectedly undergo an activation process with the capacity continuously increasing over the first 50 cycles, which can be attributed to the formation of amorphous MnO x nanosheets in the open interstitial space of the MP electrode. By adding MnSO 4 to the electrolyte, Mn dissolution can be suppressed, leading to significant improvement in the cycling performance of NPs, with a capacity of 115 mAh/g retained at 1 A/g for over 500 cycles. This work pinpoints the distinctive impacts of the particle size on the reaction mechanism and cathode performance in aqueous Zn-ion batteries.« less
  3. This study presents a comprehensive investigation on the aerosol synthesis of a semiconducting double perovskite oxide with a nominal composition of KBaTeBiO 6 , which is considered as a potential candidate for CO 2 photoreduction. We demonstrate the rapid synthesis of the multispecies compounds KBaTeBiO 6 with extreme high purity and controllable size through a single-step furnace aerosol reactor (FuAR) process. The formation mechanism of the perovskite in the aerosol route is investigated using thermogravimetric analysis to identify the optimal reference temperature, residence time and other operational parameters in the FuAR synthesis process to obtain the highly pure KBaTeBiO 6more »nanoparticles. It is observed that particle formation in the FuAR is based on a mixture of gas-to-particle and liquid-to-particle mechanisms. The phase purity of the perovskite nanoparticles depends on the ratio of the residence time and the reaction time. The particle size is strongly affected by the precursor concentration, residence time and the furnace temperature. Finally, the photocatalytic performance of the synthesized KBaTeBiO 6 nanoparticles is investigated for CO 2 photoreduction under UV-light. The best performing sample exhibits an average CO production rate of 180 μmol g −1 h −1 in the first half hour with a quantum efficiency of 1.19%, demonstrating KBaTeBiO 6 as a promising photocatalyst for CO 2 photoreduction.« less
  4. The stabilization of the B-site oxidation state in ABO 3 perovskites using wet-chemical methods is a synthetic challenge, which is of fundamental and practical interest for energy storage and conversion devices. In this work, defect-controlled (Sr-deficiency and oxygen vacancies) strontium niobium( iv ) oxide (Sr 1−x NbO 3−δ , SNO) metal oxide nanoparticles (NPs) were synthesized for the first time using a low-pressure wet-chemistry synthesis. The experiments were performed under reduced oxygen partial pressure to prevent by-product formation and with varying Sr/Nb molar ratio to favor the formation of Nb 4+ pervoskites. At a critical Sr to Nb ratio (Sr/Nbmore »= 1.3), a phase transition is observed forming an oxygen-deficient SrNbO 3 phase. Structural refinement on the resultant diffraction pattern shows that the SNO NPs consists of a near equal mixture of SrNbO 3 and Sr 0.7 NbO 3−δ crystal phases. A combination of Rietveld refinement and X-ray photoelectron spectroscopy (XPS) confirmed the stabilization of the +4 oxidation state and the formation of oxygen vacancies. The Nb local site symmetry was extracted through Raman spectroscopy and modeled using DFT. As further confirmation, the particles demonstrate the expected absorption highlighting their restored optoelectronic properties. This low-pressure wet-chemical approach for stabilizing the oxidation state of a transition metal has the potential to be extended to other oxygen sensitive, low dimensional perovskite oxides with unique properties.« less
  5. We have not only analyzed the performance of perovskite oxides as support media for the methanol oxidation reaction (MOR) but also examined the impact and significance of various reaction parameters on their synthesis. Specifically, we have generated (a) La 2 NiMnO 6 , LaMnO 3 , and LaNiO 3 nanocubes with average sizes of ∼200 nm, in addition to a series of La 2 NiMnO 6 (b) nanocubes possessing average sizes of ∼70 and 400 nm and (c) anisotropic nanorods characterized by average diameters of 40–50 nm. All of these samples, when used as supports for Pt nanoparticles, exhibited activitiesmore »which were at least twice that measured for Pt/C. We have investigated and correlated the effect of varying perovskite (i) composition, (ii) size, and (iii) morphology upon the measured MOR activity. (i) The Ni-containing perovskites yielded generally higher performance metrics than LaMnO 3 alone, suggesting that the presence of Ni is favorable for MOR, a finding supported by a shift in the Pt d -band in XPS. (ii) MOR activity is enhanced as the perovskite size increases in magnitude, suggesting that a growth in the perovskite particle size enables favorable, synergistic metal–support interactions. (iii) A comparison of the nanorods and nanocubes of a similar diameter implied that the one-dimensional morphology achieved a greater activity, a finding which can be attributed not only to the anisotropic structure but also to a desirable surface structure. Overall, these data yield key insights into the tuning of metal–support interactions via rational control over the composition, size, and morphology of the underlying catalyst support.« less