skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphology dictates learnability in neural controllers
Catastrophic forgetting continues to severely restrict the learnability of controllers suitable for multiple task environments. Efforts to combat catastrophic forgetting reported in the literature to date have focused on how control systems can be updated more rapidly, hastening their adjustment from good initial settings to new environments, or more circumspectly, suppressing their ability to overfit to any one environment. When using robots, the environment includes the robot's own body, its shape and material properties, and how its actuators and sensors are distributed along its mechanical structure. Here we demonstrate for the first time how one such design decision (sensor placement) can alter the landscape of the loss function itself, either expanding or shrinking the weight manifolds containing suitable controllers for each individual task, thus increasing or decreasing their probability of overlap across tasks, and thus reducing or inducing the potential for catastrophic forgetting.  more » « less
Award ID(s):
1830870
PAR ID:
10197971
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The 2020 Conference on Artificial Life
Page Range / eLocation ID:
52 to 59
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated continual learning is a decentralized approach that enables edge devices to continuously learn new data, mitigating catastrophic forgetting while collaboratively training a global model. However, existing state-of-the-art approaches in federated continual learning focus primarily on learning continuously to classify discrete sets of images, leaving dense regression tasks such as depth estimation unaddressed. Furthermore, autonomous agents that use depth estimation to explore dynamic indoor environments inevitably encounter spatial and temporal shifts in data distributions. These shifts trigger a phenomenon called spatio-temporal catastrophic forgetting, a more complex and challenging form of catastrophic forgetting. In this paper, we address the fundamental research question: “Can we mitigate spatiotemporal catastrophic forgetting in federated continual learning for depth estimation in dynamic indoor environments?”. To address this question, we propose Local Online and Continual Adaptation (LOCA), the first approach to address spatio-temporal catastrophic forgetting in dynamic indoor environments. LOCA relies on two key algorithmic innovations: online batch skipping and continual local aggregation. Our extensive experiments show that LOCA mitigates spatio-temporal catastrophic forgetting and improves global model performance, while running on-device up to 3.35× faster and consuming 3.13× less energy compared to state-of-the-art. Thus, LOCA lays the groundwork for scalable autonomous systems that adapt in real time to learn private and dynamic indoor environments. 
    more » « less
  2. Continual learning is an emerging paradigm in machine learning, wherein a model is exposed in an online fashion to data from multiple different distributions (i.e. environments), and is expected to adapt to the distribution change. Precisely, the goal is to perform well in the new environment, while simultaneously retaining the performance on the previous environments (i.e. avoid “catastrophic forgetting”). While this setup has enjoyed a lot of attention in the applied community, there hasn’t be theoretical work that even formalizes the desired guarantees. In this paper, we propose a framework for continual learning through the framework of feature extraction—namely, one in which features, as well as a classifier, are being trained with each environment. When the features are linear, we design an efficient gradient-based algorithm DPGrad, that is guaranteed to perform well on the current environment, as well as avoid catastrophic forgetting. In the general case, when the features are non-linear, we show such an algorithm cannot exist, whether efficient or not. 
    more » « less
  3. Bush, Daniel (Ed.)
    Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning. 
    more » « less
  4. The recent success of deep neural networks in prediction tasks on wearable sensor data is evident. However, in more practical online learning scenarios, where new data arrive sequentially, neural networks suffer severely from the ``catastrophic forgetting`` problem. In real-world settings, given a pre-trained model on the old data, when we collect new data, it is practically infeasible to re-train the model on both old and new data because the computational costs will increase dramatically as more and more data arrive in time. However, if we fine-tune the model only with the new data because the new data might be different from the old data, the neural network parameters will change to fit the new data. As a result, the new parameters are no longer suitable for the old data. This phenomenon is known as catastrophic forgetting, and continual learning research aims to overcome this problem with minimal computational costs. While most of the continual learning research focuses on computer vision tasks, implications of catastrophic forgetting in wearable computing research and potential avenues to address this problem have remained unexplored. To address this knowledge gap, we study continual learning for activity recognition using wearable sensor data. We show that the catastrophic forgetting problem is a critical challenge for real-world deployment of machine learning models for wearables. Moreover, we show that the catastrophic forgetting problem can be alleviated by employing various training techniques. 
    more » « less
  5. Abstract Task‐incremental learning (Task‐IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under‐explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in‐depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time. 
    more » « less