skip to main content


Title: Choosing your own adventure: Engaging the new learning society through integrative curriculum design

In our increasingly data-driven society, it is critical for high school students to learn to integrate computational thinking with other disciplines in solving real world problems. To address this need for the life sciences in particular, we have developed the Bio-CS Bridge, a modular computational system coupled with curriculum integrating biology and computer science. Our transdisciplinary team comprises university and high school faculty and students with expertise in biology, computer

science, and education.

Our approach engages students and teachers in scientific practices using biological data that they can collect themselves, and computational tools that they help to design and implement, to address the real-world problem of

pollinator decline.

Our modular approach to high school curriculum design provides

teachers with the educational flexibility to address national and statewide biology and computer science standards for a wide range of learner types. We are using a teacher- leader model to disseminate the Bio-CS Bridge, whose components will be freely

available online.

 
more » « less
Award ID(s):
1742446
PAR ID:
10198061
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
EPiC Series in Education Science
Volume:
3
ISSN:
2516-2306
Page Range / eLocation ID:
188 to 199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less
  2. null (Ed.)
    A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging in CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All. 
    more » « less
  3. Historically, female students have shown low interest in the field of computer science. Previous computer science curricula have failed to address the lack of female-centered computer science activities, such as socially relevant and real-life applications. Our new summer camp curriculum introduces the topics of artificial intelligence (AI), machine learning (ML) and other real-world subjects to engage high school girls in computing by connecting lessons to relevant and cutting edge technologies. Topics range from social media bots, sentiment of natural language in different media, and the role of AI in criminal justice, and focus on programming activities in the NetsBlox and Python programming languages. Summer camp teachers were prepared in a week-long pedagogy and peer-teaching centered professional development program where they concurrently learned and practiced teaching the curriculum to one another. Then, pairs of teachers led students in learning through hands-on AI and ML activities in a half-day, two-week summer camp. In this paper, we discuss the curriculum development and implementation, as well as survey feedback from both teachers and students. 
    more » « less
  4. Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career. 
    more » « less
  5. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less