skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Board 243: CS Frontiers: Module 4—A Software Engineering Curriculum for High School Females
Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career.  more » « less
Award ID(s):
1949472
PAR ID:
10501476
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less
  2. By age 15 girls start to lose interest in STEM, and less than 50% consider a STEM-related career. Providing hands-on internship opportunities has been one of the leading ways to help connect students with exploring computing careers; however, these opportunities are limited in high school. We propose a framework for a university-led high school internship initiative that focuses on service learning, co-design, and the propagation of engaging computing curricula for younger audiences. We piloted this model virtually in summer 2021, with high school students and teachers as interns mentored by university role models. Teams led the development and implementation of computing-infused curricula for a virtual summer coding camp. In this article, we share our framework and review the importance of service-learning for recruiting diverse participants and the use of co-design as a way to broker relationships between developers and community stakeholders. Additionally, we provide preliminary outcomes of our internship model on student and teacher participants gathered from qualitative data including end-of-summer presentations and post-program interviews. 
    more » « less
  3. Broadening the participation of underrepresented students in computer science fields requires careful design and implementation of culturally responsive curricula and technologies. Culturally Situated Design Tools (CSDTs) address this by engaging students in historic, cultural, and meaningful design projects based on community practices. To date, CSDT research has only been conducted in short interventions outside of CS classrooms. This paper reports on the first semester-long introductory CS course based on CSDTs, which was piloted with 51 high school students during the 2017-2018 school year. The goal of this study was to examine if a culturally responsive computing curriculum could teach computer science principles and improve student engagement. Pre-post tests, field notes, weekly teacher meetings, formative assessments, and teacher and student interviews were analyzed to assess successes and failures during implementation. The results indicate students learned the conceptual material in 6 months rather than in the 9 months previously required by the teacher. Students were also able to apply these concepts afterward when programming in Python, implying knowledge transfer. However, student opinions about culture and computing didn't improve, and student engagement was below initial expectations. Thus we explore some of the many challenges: keeping a fully integrated cultural curriculum while satisfying CS standards, maintaining student engagement, and building student agency and self-regulation. We end with a brief description for how we intend to address some of these challenges in the second iteration of this program, scheduled for fall 2018. After which a study is planned to compare this curriculum to others. 
    more » « less
  4. null (Ed.)
    The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, and Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs. 
    more » « less
  5. A research-practice partnership (RPP) used a teacher co-design process, supported by equity-focused professional development, to create an elementary-level curriculum that integrates content, practices, and learning progressions from state computing standards with other standards-based curricula. Most district students are part of historically marginalized groups and the RPP chose to develop an equity and inclusion-focused curriculum that would be taught in all elementary classrooms to all students. Twelve teacher teams, supported by researchers and ELL and SPED specialists, designed, piloted, and documented 23 modules of 4-8, 45-minute lessons across K-5. Early adopter teachers followed the pilots and implemented the modules in their classrooms with the goal of facilitating adoption by all elementary classroom teachers. After being interrupted by the pandemic, the RPP developed a strategy where principals in cohorts of schools agreed to collaborate with RPP school-based lead teachers to establish professional learning communities (PLCs) to support classroom implementation of the modules. Eleven schools participated in a 2021-22 cohort and nine more schools joined in 2022-23. Centering equity, PLCs, and quality module documentation and materials are key to sustaining and evolving the CSforAll curriculum. The modules were revised based on feedback obtained from ELL and SPED specialists, early adopters, teacher coordinators, researchers, and district curriculum directors. Using a large data set of meeting and classroom observation records, interviews, field notes, focus groups, surveys, and module documentation, we track the evolution of the curriculum and provide a detailed analysis of one module as an example. 
    more » « less