skip to main content


Title: Mechanical, thermal, and electrochemical properties of Pr doped ceria from wafer curvature measurements
This work demonstrates, for the first time, that a variety of disparate and technologically-relevent thermal, mechanical, and electrochemical oxygen-exchange material properties can all be obtained from in situ , current-collector-free wafer curvature measurements. Specifically, temperature or oxygen partial pressure induced changes in the curvature of 230 nm thick (100)-oriented Pr 0.1 Ce 0.9 O 1.95−x (10PCO) films atop 200 μm thick single crystal yttria stabilized zirconia or magnesium oxide substrates were used to measure the biaxial modulus, Young's modulus, thermal expansion coefficient, thermo-chemical expansion coefficient, oxygen nonstoichiometry, chemical oxygen surface exchange coefficient, oxygen surface exchange resistance, thermal stress, chemical stress, thermal strain, and chemical strain of the model mixed ionic electronic conducting material 10PCO. The (100)-oriented thin film 10PCO thermal expansion coefficient, thermo-chemical expansion coefficient, oxygen nonstoichiometry, and Young's modulus (which is essentially constant, at ∼200 MPa, over the entire 280–700 °C temperature range in air) measured here were similar to those from other bulk and thin film 10PCO studies. In addition, the measured PCO10 oxygen surface coefficients were in agreement with those reported by other in situ , current-collector-free techniques. Taken together, this work highlights the advantages of using a sample's mechanical response, instead of the more traditional electrical response, to probe the electrochemical properties of the ion-exchange materials used in solid oxide fuel cell, solid oxide electrolysis cell, gas-sensing, battery, emission control, water splitting, water purification, and other electrochemically-active devices.  more » « less
Award ID(s):
1254453
NSF-PAR ID:
10198063
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
43
ISSN:
1463-9076
Page Range / eLocation ID:
27350 to 27360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid–gas interactions at electrode surfaces determine the efficiency of solid‐oxide fuel cells and electrolyzers. Here, the correlation between surface–gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8Sr0.2Co0.2Fe0.8O3. The gas‐exchange kinetics are characterized by synthesizing epitaxial half‐cell geometries where three single‐variant surfaces are produced [i.e., La0.8Sr0.2Co0.2Fe0.8O3/La0.9Sr0.1Ga0.95Mg0.05O3−δ/SrRuO3/SrTiO3(001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface‐orientation dependency of the gas‐exchange kinetics, wherein (111)‐oriented surfaces exhibit an activity >3‐times higher as compared to (001)‐oriented surfaces. Oxygen partial pressure ()‐dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas‐exchange kinetics, the reaction mechanisms and rate‐limiting steps are the same (i.e., charge‐transfer to the diatomic oxygen species). First‐principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron‐based, ambient‐pressure X‐ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin‐film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)‐surface exhibits a high density of active surface sites which leads to higher activity.

     
    more » « less
  2. Abstract

    Effective integration of perovskite films into devices requires knowledge of their electro‐chemomechanical properties. Raman spectroscopy is an excellent tool for probing such properties as the films' vibrational characteristics couple to the lattice volumetric changes during chemical expansion. While lattice volumetric changes are typically accessed by analyzing Raman shifts as a function of pressure, stress, or temperature, such methods can be impractical for thin films and do not capture information on chemical expansion. An in situ Raman spectroscopy technique using an electrochemical titration cell to change the oxygen nonstoichiometry of a model perovskite film, Sr(Ti,Fe)O3−y , is reported and the lattice vibrational properties are correlated to the material's chemical expansion. How to select an appropriate Raman vibrational mode to track the evolution in oxygen nonstoichiometry is discussed. Subsequently, the frequency of the oxygen stretching mode around Fe4+is tracked, as it decreases during reduction as the material expands and increases during reoxidation as the material shrinks. This methodology of oxygen pumping and in situ Raman spectroscopy of oxide films enables future in operando measurements even for small material volumes, as is typical for applications of films as electrodes or electrolytes utilized in electrochemical energy conversion or memory devices.

     
    more » « less
  3. Sr(Ti 1−x Fe x )O 3−δ (STF) has recently been explored as an oxygen electrode for solid oxide electrochemical cells (SOCs). Model thin film electrode studies show oxygen surface exchange rates that generally improve with increasing Fe content when x < 0.5, and are comparable to the best Co-containing perovskite electrode materials. Recent results on porous electrodes with the specific composition Sr(Ti 0.3 Fe 0.7 )O 3−δ show excellent electrode performance and stability, but other compositions have not been tested. Here we report results for porous electrodes with a range of compositions from x = 0.5 to 0.9. The polarization resistance decreases with increasing Fe content up to x = 0.7, but increases for further increases in x . This results from the interaction of two effects – the oxygen solid state diffusion coefficient increases with increasing x , but the electrode surface area and surface oxygen exchange rate decrease due to increased sinterability and Sr surface segregation for the Fe-rich compositions. Symmetric cells showed no degradation during 1000 h life tests at 700 °C even at a current density of 1.5 A cm −2 , showing that all the STF electrode compositions worked stably in both fuel cell mode and electrolysis modes. The excellent stability may be explained by X-ray Photoelectron Spectroscopy (XPS) results showing that the amount of surface segregated Sr did not change during the long-term testing, and by relatively low polarization resistances that help avoid electrode delamination. 
    more » « less
  4. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
    more » « less
  5. A protocol for successfully depositing [001] textured, 2–3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field. 
    more » « less