skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous pressure dependence of the electronic properties of molecular crystals explained by changes in intermolecular electronic coupling
Award ID(s):
1554428
PAR ID:
10198083
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Synthetic Metals
Volume:
253
Issue:
C
ISSN:
0379-6779
Page Range / eLocation ID:
9 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this review, an attempt has been made to compare the electronic structures of various 5d iridates (iridium oxides), with an effort to note the common features and differences. Both experimental studies, especially angle-resolved photoemission spectroscopy (ARPES) results, and first-principles band structure calculations have been discussed. This brings to focus the fact that the electronic structures and magnetic properties of the high- Z 5d transition iridates depend on the intricate interplay of strong electron correlation, strong (relativistic) spin–orbit coupling, lattice distortion, and the dimensionality of the system. For example, in the thin film limit, SrIrO 3 exhibits a metal–insulator transition that corresponds to the dimensionality crossover, with the band structure resembling that of bulk Sr 2 IrO 4 . 
    more » « less
  2. Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born–Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications. 
    more » « less
  3. Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these multiscale relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, the integration and scalability of these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ~20 nm length scale, with robust statistical sampling. kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing truly mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales. 
    more » « less
  4. null (Ed.)
    Precise control of the life cycle of materials has become critical. Long-lasting materials are not always the best—for example, nondegradable plastic waste is now a serious environmental problem. Transient electronic devices have a prescribed life cycle in which all or part of the device can physically dissolve, disappear, or degrade after their utility ends. This concept creates compelling opportunities for biodegradable temporary, implantable electronics that do not require removal; environmentally benign biodegradable electronics with zero waste; and security hardware with on-time system destruction. Nanoscale materials provide new uses for transient materials dissolution by scaling up the rate of degradation; for example, a microscale Si single crystal is not dissoluble, but at around 100 nm, the Si single crystal dissolves in approximately one month. Significant advances have been made in exploring transient, water-soluble, and biodegradable nano-/micromaterials, and their degradation chemistry and kinetics. Advancing the state of the art in transient electronics requires contributions from many disciplines of materials science ranging from materials analysis to applications. This article outlines the history of transient electronics and briefly overviews concepts and issues from inorganic- and organic-based electronic materials, process technology, and energy devices to trigger transient electronics. 
    more » « less