skip to main content


Title: Phasic cholinergic signaling promotes emergence of local gamma rhythms in excitatory–inhibitory networks
Abstract

Recent experimental results have shown that the detection of cues in behavioral attention tasks relies on transient increases of acetylcholine (ACh) release in frontal cortex and cholinergically driven oscillatory activity in the gamma frequency band (Howe et al. Journal of Neuroscience, 2017, 37, 3215). The cue‐induced gamma rhythmic activity requires stimulation of M1 muscarinic receptors. Using biophysical computational modeling, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M‐type K+current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh‐induced effects on the M current conductance,gKs, change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal‐Interneuronal Network Gamma mechanism. Depending on connectivity strengths between and among E and I cells, gamma activity decays with the simulatedgKstransient modulation or is sustained in the network after thegKstransient has completely dissipated. We investigated the sensitivity of the emergent gamma activity to synaptic strengths, external noise and simulated levels ofgKsmodulation. To address recent experimental findings that cholinergic signaling is likely spatially focused and dynamic, we show that localizedgKsmodulation can induce transient changes of cellular excitability in local subnetworks, subsequently causing population‐specific gamma oscillations. These results highlight dynamical mechanisms underlying localization of ACh‐driven responses and suggest that spatially localized, cholinergically induced gamma may contribute to selectivity in the processing of competing external stimuli, as occurs in attentional tasks.

 
more » « less
Award ID(s):
1749430
NSF-PAR ID:
10456828
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
European Journal of Neuroscience
Volume:
52
Issue:
6
ISSN:
0953-816X
Page Range / eLocation ID:
p. 3545-3560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rubin, Jonathan (Ed.)
    Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K + current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information. 
    more » « less
  2. null (Ed.)
    Abstract Homeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain development, including local synaptic E–I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a 'Phase Zero' clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology with studying E–I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (chi-square (2, N = 10) = 20, p = 4.5400e−05), and spectral exponent between 30–50 Hz (chi-square (2, N = 16) = 13.88, p = 0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl- l -carnitine (LCLA), was found on the CCO activity (chi-square (3, N = 10) = 25.44, p = 1.2492e−05), spectral exponent between 1 and 20 Hz (chi-square (3, N = 16) = 43.5, p = 1.9273e−09) and 30–50 Hz (chi-square (3, N = 16) = 23.47, p = 3.2148e−05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present the feasibility of a multimodal approach, combining electrophysiology and broadband Vis–NIR spectroscopy, to monitor neurodevelopment in brain organoid models that can complement traditional drug design approaches to test clinically meaningful hypotheses. 
    more » « less
  3. Synchronization in the gamma band (25–150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.

     
    more » « less
  4. Homeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes includingKCNQ3which encodes Kv7.3. Neuronal Kv7 channels are mostly heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the axon initial segment (AIS) where their current potently inhibits repetitive and burst firing of APs. However, whether a decrease in Kv7.3 expression occurs at the AIS during homeostatic scaling of intrinsic excitability and what signaling pathway reducesKCNQ3transcript upon prolonged activity blockade remain unknown. Here, we report that prolonged activity blockade in cultured hippocampal neurons reduces the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged pharmacological inhibition of ERK1/2 decreaseKCNQ3andBDNFtranscripts as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our findings suggest that a reduction in the ERK1/2 activity and subsequent transcriptional down-regulation may serve as a potential signaling pathway that links prolonged activity blockade to homeostatic control of BDNF-TrkB signaling and Kv7.3 density at the AIS during homeostatic scaling of AP firing rate.

     
    more » « less
  5. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band.

    We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3.

    Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.

    References

    Lee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.

    Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.

    Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17.

    Figure 1

     

    more » « less