skip to main content

Title: Phasic cholinergic signaling promotes emergence of local gamma rhythms in excitatory–inhibitory networks

Recent experimental results have shown that the detection of cues in behavioral attention tasks relies on transient increases of acetylcholine (ACh) release in frontal cortex and cholinergically driven oscillatory activity in the gamma frequency band (Howe et al. Journal of Neuroscience, 2017, 37, 3215). The cue‐induced gamma rhythmic activity requires stimulation of M1 muscarinic receptors. Using biophysical computational modeling, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M‐type K+current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh‐induced effects on the M current conductance,gKs, change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal‐Interneuronal Network Gamma mechanism. Depending on connectivity strengths between and among E and I cells, gamma activity decays with the simulatedgKstransient modulation or is sustained in the network after thegKstransient has completely dissipated. We investigated the sensitivity of the emergent gamma activity to synaptic strengths, external noise and simulated levels ofgKsmodulation. To address recent experimental findings that cholinergic signaling is likely spatially focused and dynamic, we show that localizedgKsmodulation can induce transient changes of cellular excitability in local subnetworks, subsequently causing population‐specific gamma oscillations. These results highlight dynamical mechanisms underlying localization of ACh‐driven responses and suggest that spatially localized, cholinergically induced gamma may contribute to selectivity in the processing of competing external stimuli, as occurs in attentional tasks.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
European Journal of Neuroscience
Page Range / eLocation ID:
p. 3545-3560
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rubin, Jonathan (Ed.)
    Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K + current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information. 
    more » « less
  2. null (Ed.)
    Abstract Homeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain development, including local synaptic E–I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a 'Phase Zero' clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology with studying E–I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (chi-square (2, N = 10) = 20, p = 4.5400e−05), and spectral exponent between 30–50 Hz (chi-square (2, N = 16) = 13.88, p = 0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl- l -carnitine (LCLA), was found on the CCO activity (chi-square (3, N = 10) = 25.44, p = 1.2492e−05), spectral exponent between 1 and 20 Hz (chi-square (3, N = 16) = 43.5, p = 1.9273e−09) and 30–50 Hz (chi-square (3, N = 16) = 23.47, p = 3.2148e−05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present the feasibility of a multimodal approach, combining electrophysiology and broadband Vis–NIR spectroscopy, to monitor neurodevelopment in brain organoid models that can complement traditional drug design approaches to test clinically meaningful hypotheses. 
    more » « less
  3. Homeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes includingKCNQ3which encodes Kv7.3. Neuronal Kv7 channels are mostly heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the axon initial segment (AIS) where their current potently inhibits repetitive and burst firing of APs. However, whether a decrease in Kv7.3 expression occurs at the AIS during homeostatic scaling of intrinsic excitability and what signaling pathway reducesKCNQ3transcript upon prolonged activity blockade remain unknown. Here, we report that prolonged activity blockade in cultured hippocampal neurons reduces the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged pharmacological inhibition of ERK1/2 decreaseKCNQ3andBDNFtranscripts as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our findings suggest that a reduction in the ERK1/2 activity and subsequent transcriptional down-regulation may serve as a potential signaling pathway that links prolonged activity blockade to homeostatic control of BDNF-TrkB signaling and Kv7.3 density at the AIS during homeostatic scaling of AP firing rate.

    more » « less
  4. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band.

    We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3.

    Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations.


    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.


    Lee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.

    Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.

    Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17.

    Figure 1


    more » « less
  5. The current study examined the neural correlates of spatial rotation in eight engineering undergraduates. Mastering engineering graphics requires students to mentally visualize in 3D and mentally rotate parts when developing 2D drawings. Students’ spatial rotation skills play a significant role in learning and mastering engineering graphics. Traditionally, the assessment of students’ spatial skills involves no measurements of neural activity during student performance of spatial rotation tasks. We used electroencephalography (EEG) to record neural activity while students performed the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R). The two main objectives were to 1) determine whether high versus low performers on the Revised PSVT:R show differences in EEG oscillations and 2) identify EEG oscillatory frequency bands sensitive to item difficulty on the Revised PSVT:R.  Overall performance on the Revised PSVT:R determined whether participants were considered high or low performers: students scoring 90% or higher were considered high performers (5 students), whereas students scoring under 90% were considered low performers (3 students). Time-frequency analysis of the EEG data quantified power in several oscillatory frequency bands (alpha, beta, theta, gamma, delta) for comparison between low and high performers, as well as between difficulty levels of the spatial rotation problems.   Although we did not find any significant effects of performance type (high, low) on EEG power, we observed a trend in reduced absolute delta and gamma power for hard problems relative to easier problems. Decreases in delta power have been reported elsewhere for difficult relative to easy arithmetic calculations, and attributed to greater external attention (e.g., attention to the stimuli/numbers), and consequently, reduced internal attention (e.g., mentally performing the calculation). In the current task, a total of three spatial objects are presented. An example rotation stimulus is presented, showing a spatial object before and after rotation. A target stimulus, or spatial object before rotation is then displayed. Students must choose one of five stimuli (multiple choice options) that indicates the correct representation of the object after rotation. Reduced delta power in the current task implies that students showed greater attention to the example and target stimuli for the hard problem, relative to the moderate and easy problems. Therefore, preliminary findings suggest that students are less efficient at encoding the target stimuli (external attention) prior to mental rotation (internal attention) when task difficulty increases.  Our findings indicate that delta power may be used to identify spatial rotation items that are especially challenging for students. We may then determine the efficacy of spatial rotation interventions among engineering education students, using delta power as an index for increases in internal attention (e.g., increased delta power). Further, in future work, we will also use eye-tracking to assess whether our intervention decreases eye fixation (e.g., time spent viewing) toward the target stimulus on the Revised PSVT:R. By simultaneously using EEG and eye-tracking, we may identify changes in internal attention and encoding of the target stimuli that are predictive of improvements in spatial rotation skills among engineering education students.  
    more » « less