skip to main content


Title: Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change
Award ID(s):
1655690
NSF-PAR ID:
10198131
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Biogeography
Volume:
46
Issue:
9
ISSN:
0305-0270
Page Range / eLocation ID:
2115 to 2125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Elevated rates of evolution in reproductive proteins are commonly observed in animal species, and are thought to be driven by the action of sexual selection and sexual conflict acting specifically on reproductive traits. Whether similar patterns are broadly observed in other biological groups is equivocal. Here, we examine patterns of protein divergence among wild tomato species ( Solanum section Lycopersicon ), to understand forces shaping the evolution of reproductive genes in this diverse, rapidly evolving plant clade. By comparing rates of molecular evolution among loci expressed in reproductive and non-reproductive tissues, our aims were to test if: (a) reproductive-specific loci evolve more rapidly, on average, than non-reproductive loci; (b) ‘male’-specific loci evolve at different rates than ‘female’-specific loci; (c) genes expressed exclusively in gametophytic (haploid) tissue evolve differently from genes expressed in sporophytic (diploid) tissue or in both tissue types; and (d) mating system variation (a potential proxy for the expected strength of sexual selection and/or sexual conflict) affects patterns of protein evolution. We observed elevated evolutionary rates in reproductive proteins. However, this pattern was most evident for female- rather than male-specific loci, both broadly and for individual loci inferred to be positively selected. These elevated rates might be facilitated by greater tissue-specificity of reproductive proteins, as faster rates were also associated with more narrow expression domains. In contrast, we found little evidence that evolutionary rates are consistently different in loci experiencing haploid selection (gametophytic-exclusive loci), or in lineages with quantitatively different mating systems. Overall while reproductive protein evolution is generally elevated in this diverse plant group, some specific patterns of evolution are more complex than those reported in other (largely animal) systems, and include a more prominent role for female-specific loci among adaptively evolving genes. 
    more » « less
  2. Abstract As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts. 
    more » « less
  3. Purugganan, Michael (Ed.)
    Abstract Whole-genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1–2 Million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two coresident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g., dN/dS, πN/πS) may be biased when species of different ploidy levels are compared. 
    more » « less