skip to main content


Title: Correlated and decoupled evolution of adult and larval body size in frogs
The majority of animal species have complex life cycles, in which larval stages may have very different morphologies and ecologies relative to adults. Anurans (frogs) provide a particularly striking example. However, the extent to which larval and adult morphologies (e.g. body size) are correlated among species has not been broadly tested in any major group. Recent studies have suggested that larval and adult morphology are evolutionarily decoupled in frogs, but focused within families and did not compare the evolution of body sizes. Here, we test for correlated evolution of adult and larval body size across 542 species from 42 families, including most families with a tadpole stage. We find strong phylogenetic signal in larval and adult body sizes, and find that both traits are significantly and positively related across frogs. However, this relationship varies dramatically among clades, from strongly positive to weakly negative. Furthermore, rates of evolution for both variables are largely decoupled among clades. Thus, some clades have high rates of adult body-size evolution but low rates in tadpole body size (and vice versa). Overall, we show for the first time that body sizes are generally related between adult and larval stages across a major group, even as evolutionary rates of larval and adult size are largely decoupled among species and clades.  more » « less
Award ID(s):
1655690
NSF-PAR ID:
10198144
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1933
ISSN:
0962-8452
Page Range / eLocation ID:
20201474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Animals with biphasic lifecycles often inhabit different visual environments across ontogeny. Many frogs and toads (Amphibia: Anura) have free-living aquatic larvae (tadpoles) that metamorphose into adults that inhabit a range of aquatic and terrestrial environments. Ecological differences influence eye size across species, but these relationships have not yet been explored across life stages in an ontogenetic allometric context. We examined eye-body size scaling in a species with aquatic larvae and terrestrial adults, the common frog Rana temporaria, using a well-sampled developmental series. We found a shift in ontogenetic allometric trajectory near metamorphosis indicating prioritized growth in tadpole eyes. To explore the effects of different tadpole and adult ecologies on eye-body scaling, we expanded our taxonomic sampling to include developmental series of eleven additional anuran species. Intraspecific eye-body scaling was variable among species, with 8/12 species exhibiting a significant change in allometric slope between tadpoles and adults. Traits categorizing both tadpole ecology (microhabitat, eye position, mouth position) and adult ecology (habitat, activity pattern) across species had significant effects on allometric slopes among tadpoles, but only tadpole eye position had a significant effect among adults. Our study suggests that relative eye growth in the preliminary stages of biphasic anuran ontogenies is somewhat decoupled and may be shaped by both immediate ecological need (i.e. tadpole visual requirements) and what will be advantageous during later adult stages. 
    more » « less
  2. Abstract

    A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.

     
    more » « less
  3. Abstract

    The evolution of sexually selected traits is a major topic in evolutionary biology. However, large-scale evolutionary patterns in these traits remain understudied, especially those traits used in male–male competition (weapons sensu lato). Here, we analyze weapon evolution in chamaeleonid lizards, both within and between the sexes. Chameleons are an outstanding model system because of their morphological diversity (including 11 weapon types among ~220 species) and a large-scale time-calibrated phylogeny. We analyze these 11 traits among 165 species using phylogenetic methods, addressing many questions for the first time in any group. We find that all 11 weapons have each evolved multiple times and that weapon origins are generally more frequent than their losses. We find that almost all weapons have each persisted for >30 million years (and some for >65 million years). Across chameleon phylogeny, we identify both hotspots for weapon evolution (up to 10 types present per species) and coldspots (all weapons absent, many through loss). These hotspots are significantly associated with larger male body size, but are only weakly related to sexual-size dimorphism. We also find that weapon evolution is strongly correlated between males and females. Overall, these results provide a baseline for understanding large-scale patterns of weapon evolution within clades.

     
    more » « less
  4. Abstract

    Surprisingly, little is known about body‐size evolution within the most diverse amphibian order, anurans (frogs and toads), despite known effects of body size on the physiological, ecological and life‐history traits of animals more generally. Here, we examined anuran body‐size evolution among 2,434 species with over 200 million years of shared evolutionary history. We found clade‐specific evolutionary shifts to new body‐size optima along with numerous independent transitions to gigantic and miniature body sizes, despite the upper limits of anuran body size remaining quite consistent throughout the fossil record. We found a weak, positive correlation between a species’ body size and maximum latitude and elevation, including a dearth of small species at higher elevations and broader latitudinal and elevational ranges in larger anurans. Although we found modest differences in mean anuran body size among microhabitats, there was extensive overlap in the range of body sizes across microhabitats. Finally, we found that larger anurans are more likely to consume vertebrate prey than smaller anurans are and that species with a free‐swimming larval phase during development are larger on average than those in which development into a froglet occurs within the egg. Overall, anuran body size does not conform to geographic and ecological patterns observed in other tetrapods but is perhaps more notable for variation in body size within geographic regions, ecologies and life histories. Here, we document this variation and propose target clades for detailed studies aimed at disentangling how and why variation in body size was generated and is maintained in anurans.

     
    more » « less
  5. Abstract Pupil constriction has important functional consequences for animal vision, yet the evolutionary mechanisms underlying diverse pupil sizes and shapes are poorly understood. We aimed to quantify the diversity and evolution of pupil shapes among amphibians and to test for potential correlations to ecology based on functional hypotheses. Using photographs, we surveyed pupil shape across adults of 1294 amphibian species, 74 families and three orders, and additionally for larval stages for all families of frogs and salamanders with a biphasic ontogeny. For amphibians with a biphasic life history, pupil shape changed in many species that occupy distinct habitats before and after metamorphosis. In addition, non-elongated (circular or diamond) constricted pupils were associated with species inhabiting aquatic or underground environments, and elongated pupils (with vertical or horizontal long axes) were more common in species with larger absolute eye sizes. We propose that amphibians provide a valuable group within which to explore the anatomical, physiological, optical and ecological mechanisms underlying the evolution of pupil shape. 
    more » « less