skip to main content

Title: Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology
Frogs and toads (Amphibia: Anura) display diverse ecologies and behaviours, which are often correlated with visual capacity in other vertebrates. Additionally, anurans exhibit a broad range of relative eye sizes, which have not previously been linked to ecological factors in this group. We measured relative investment in eye size and corneal size for 220 species of anurans representing all 55 currently recognized families and tested whether they were correlated with six natural history traits hypothesized to be associated with the evolution of eye size. Anuran eye size was significantly correlated with habitat, with notable decreases in eye investment among fossorial, subfossorial and aquatic species. Relative eye size was also associated with mating habitat and activity pattern. Compared to other vertebrates, anurans have relatively large eyes for their body size, indicating that vision is probably of high importance. Our study reveals the role that ecology and behaviour may have played in the evolution of anuran visual systems and highlights the usefulness of museum specimens, and importance of broad taxonomic sampling, for interpreting macroecological patterns.
Authors:
; ; ; ; ;
Award ID(s):
1655751
Publication Date:
NSF-PAR ID:
10220620
Journal Name:
Proceedings
Volume:
287
Page Range or eLocation-ID:
20201393
ISSN:
1471-2954
Sponsoring Org:
National Science Foundation
More Like this
  1. As species change through evolutionary time, the neurological and morphological structures that underlie behavioral systems typically remain coordinated. This is especially important for communication systems, in which these structures must remain coordinated both within and between senders and receivers for successful information transfer. The acoustic communication of anurans (“frogs”) offers an excellent system to ask when and how such coordination is maintained, and to allow researchers to dissociate allometric effects from independent correlated evolution. Anurans constitute one of the most speciose groups of vocalizing vertebrates, and females typically rely on vocalizations to localize males for reproduction. Here, we compile and compare data on various aspects of auditory morphology, hearing sensitivity, and call-dominant frequency across 81 species of anurans. We find robust, phylogenetically independent scaling effects of body size for all features measured. Furthermore, after accounting for body size, we find preliminary evidence that morphological evolution beyond allometry can correlate with hearing sensitivity and dominant frequency. These data provide foundational results regarding constraints imposed by body size on communication systems and motivate further data collection and analysis using comparative approaches across the numerous anuran species.
  2. Animals with biphasic lifecycles often inhabit different visual environments across ontogeny. Many frogs and toads (Amphibia: Anura) have free-living aquatic larvae (tadpoles) that metamorphose into adults that inhabit a range of aquatic and terrestrial environments. Ecological differences influence eye size across species, but these relationships have not yet been explored across life stages in an ontogenetic allometric context. We examined eye-body size scaling in a species with aquatic larvae and terrestrial adults, the common frog Rana temporaria, using a well-sampled developmental series. We found a shift in ontogenetic allometric trajectory near metamorphosis indicating prioritized growth in tadpole eyes. To explore the effects of different tadpole and adult ecologies on eye-body scaling, we expanded our taxonomic sampling to include developmental series of eleven additional anuran species. Intraspecific eye-body scaling was variable among species, with 8/12 species exhibiting a significant change in allometric slope between tadpoles and adults. Traits categorizing both tadpole ecology (microhabitat, eye position, mouth position) and adult ecology (habitat, activity pattern) across species had significant effects on allometric slopes among tadpoles, but only tadpole eye position had a significant effect among adults. Our study suggests that relative eye growth in the preliminary stages of biphasic anuran ontogenies is somewhatmore »decoupled and may be shaped by both immediate ecological need (i.e. tadpole visual requirements) and what will be advantageous during later adult stages.« less
  3. The majority of animal species have complex life cycles, in which larval stages may have very different morphologies and ecologies relative to adults. Anurans (frogs) provide a particularly striking example. However, the extent to which larval and adult morphologies (e.g. body size) are correlated among species has not been broadly tested in any major group. Recent studies have suggested that larval and adult morphology are evolutionarily decoupled in frogs, but focused within families and did not compare the evolution of body sizes. Here, we test for correlated evolution of adult and larval body size across 542 species from 42 families, including most families with a tadpole stage. We find strong phylogenetic signal in larval and adult body sizes, and find that both traits are significantly and positively related across frogs. However, this relationship varies dramatically among clades, from strongly positive to weakly negative. Furthermore, rates of evolution for both variables are largely decoupled among clades. Thus, some clades have high rates of adult body-size evolution but low rates in tadpole body size (and vice versa). Overall, we show for the first time that body sizes are generally related between adult and larval stages across a major group, even as evolutionarymore »rates of larval and adult size are largely decoupled among species and clades.« less
  4. The deep sea (>500 m ocean depth) is the largest global habitat, characterized by cool temperatures, low ambient light, and food-poor conditions relative to shallower waters. Deep-sea teleosts generally grow more slowly than those inhabiting shallow water. However, this is a generalization, and even amongst deep-sea teleosts, there is a broad continuum of growth rates. The importance of potential drivers of growth rate variability amongst deep-sea species, such as temperature, food availability, oxygen concentration, metabolic rate, and phylogeny, have yet to be fully evaluated. We present a meta-analysis in which age and size data were collected for 53 species of teleosts whose collective depth ranges span from surface waters to 4000 m. We calculated growth metrics using both calendar and thermal age, and compared them with environmental, ecological, and phylogenetic variables. Temperature alone explained up to 30% of variation in the von Bertalanffy growth coefficient ( K , yr -1 ), and 21% of the variation in the average annual increase in mass (AIM, %), a metric of growth prior to maturity. After correcting for temperature effects, depth was still a significant driver of growth, explaining up to 20 and 10% of the remaining variation in K and AIM, respectively.more »Oxygen concentration also explained ~11% of remaining variation in AIM following temperature correction. Relatively minor amounts of variation may be explained by food availability, phylogeny, and the locomotory mode of the teleosts. We also found strong correlation between growth and metabolic rate, which may be an underlying driver also related to temperature, depth, and other factors, or the 2 parameters may simply covary as a result of being linked by evolutionary pressures. Evaluating the influence of ecological and/or environmental drivers of growth is a vital step in understanding both the evolution of life history parameters across the depth continuum as well as their implications for species’ resilience to increasing anthropogenic stressors.« less
  5. Gravity is one of the most ubiquitous environmental effects on living systems: Cellular and organismal responses to gravity are of central importance to understanding the physiological function of organisms, especially eukaryotes. Gravity has been demonstrated to have strong effects on the closed cardiovascular systems of terrestrial vertebrates, with rapidly responding neural reflexes ensuring proper blood flow despite changes in posture. Invertebrates possess open circulatory systems, which could provide fewer mechanisms to restrict gravity effects on blood flow, suggesting that these species also experience effects of gravity on blood pressure and distribution. However, whether gravity affects the open circulatory systems of invertebrates is unknown, partly due to technical measurement issues associated with small body size. Here we used X-ray imaging, radio-tracing of hemolymph, and micropressure measurements in the American grasshopper,Schistocerca americana, to assess responses to body orientation. Our results show that during changes in body orientation, gravity causes large changes in blood and air distribution, and that body position affects ventilation rate. Remarkably, we also found that insects show similar heart rate responses to body position as vertebrates, and contrasting with the classic understanding of open circulatory systems, have flexible valving systems between thorax and abdomen that can separate pressures. Gravitationalmore »effects on invertebrate cardiovascular and respiratory systems are likely to be widely distributed among invertebrates and to have broad influence on morphological and physiological evolution.

    « less