skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Award ID contains: 1716251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries. 
    more » « less
  2. Abstract With the most trans-iron elements detected of any star outside the solar system, HD 222925 represents the most complete chemical inventory among metal-poor stars enhanced with elements made by the rapid neutron capture (“r”) process. As such, HD 222925 may be a new “template” for the observationalr-process, where before the (much higher-metallicity) solarr-process residuals were used. In this work, we test under which conditions a single site accounts for the entire elementalr-process abundance pattern of HD 222925. We found that several of our tests—with the single exception of the black hole–neutron star merger case—challenge the single-site assumption by producing an ejecta distribution that is highly constrained, in disagreement with simulation predictions. However, we found that ejecta distributions that are more in line with simulations can be obtained under the condition that the nuclear data near the secondr-process peak are changed. Therefore, for HD 222925 to be a canonicalr-process template likely as a product of a single astrophysical source, the nuclear data need to be reevaluated. The new elemental abundance pattern of HD 222925—including the abundances obtained from space-based, ultraviolet (UV) data—call for a deeper understanding of both astrophysicalr-process sites and nuclear data. Similar UV observations of additionalr-process–enhanced stars will be required to determine whether the elemental abundance pattern of HD 222925 is indeed a canonical template (or an outlier) for ther-process at low metallicity. 
    more » « less
  3. Abstract Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼1700r-process-enhanced (RPE; [Eu/Fe] > +0.3) metal-poor stars ([Fe/H] ≤ −0.8) compiled from theR-Process Alliance, the GALactic Archaeology with HERMES (GALAH) DR3 survey, and additional literature sources. We find dynamical clusters of these stars based on their orbital energies and cylindrical actions using theHDBSCANunsupervised learning algorithm. We identify 36 chemodynamically tagged groups (CDTGs) containing between five and 22 members; 17 CDTGs have at least 10 member stars. Previously known Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the splashed disk, the metal-weak thick disk, the Helmi stream, LMS-1 (Wukong), and Thamnos are reidentified. Associations with MW globular clusters are determined for seven CDTGs; no recognized MW dwarf galaxy satellites were associated with any of our CDTGs. Previously identified dynamical groups are also associated with our CDTGs, adding structural determination information and possible new identifications. Carbon-enhanced metal-poor RPE (CEMP-r) stars are identified among the targets; we assign these to morphological groups in a Yoon–BeersA(C)cversus [Fe/H] diagram. Our results confirm previous dynamical analyses that showed RPE stars in CDTGs share common chemical histories, influenced by their birth environments. 
    more » « less
  4. ABSTRACT We investigate the distribution of the lithium abundances, A(Li), of metal-poor dwarf and subgiant stars within the limits 5500 K < Teff < 6700 K, −6.0 < [Fe/H] < −1.5, and log  g ≳ 3.5 (a superset of parameters first adopted by Spite and Spite), using literature data for some 200 stars. We address the problem of the several methods that yield Teff differences up to 350 K, and hence uncertainties of 0.3 dex in [Fe/H] and A(Li), by anchoring Teff to the infrared flux method. We seek to understand the behaviour of A(Li) as a function of [Fe/H] – small dispersion at highest [Fe/H], ‘meltdown’ at intermediate values (i.e. large spread in Li below the Spite Plateau), and extreme variations at lowest [Fe/H]. Decreasing A(Li) is accompanied by increasing dispersion. Insofar as [Fe/H] increases as the Universe ages, the behaviour of A(Li) reflects chaotic star formation involving destruction of primordial Li, which settles to the classic Spite Plateau, with A(Li) ∼ 2.3, by the time the Galactic halo reaches [Fe/H] ∼ −3.0. We consider three phases: (1) first star formation in C-rich environments ([C/Fe] > 2.3), with depleted Li; (2) silicates-dominated star formation and destruction of primordial Li during pre-main-sequence evolution; and (3) materials from these two phases co-existing and coalescing to form C-rich stars with A(Li) below the Spite Plateau, leading to a toy model with the potential to explain the ‘meltdown’. We comment on the results of Mucciarelli et al. on the Lower RGB, and the suggestion of Aguado et al. favouring a lower primordial lithium abundance than generally accepted. 
    more » « less
  5. Abstract The Milky Way has accreted many ultra-faint dwarf galaxies (UFDs), and stars from these galaxies can be found throughout our Galaxy today. Studying these stars provides insight into galaxy formation and early chemical enrichment, but identifying them is difficult. Clustering stellar dynamics in 4D phase space (E,Lz,Jr,Jz) is one method of identifying accreted structure that is currently being utilized in the search for accreted UFDs. We produce 32 simulated stellar halos using particle tagging with the Caterpillar simulation suite and thoroughly test the abilities of different clustering algorithms to recover tidally disrupted UFD remnants. We perform over 10,000 clustering runs, testing seven clustering algorithms, roughly twenty hyperparameter choices per algorithm, and six different types of data sets each with up to 32 simulated samples. Of the seven algorithms, HDBSCAN most consistently balances UFD recovery rates and cluster realness rates. We find that, even in highly idealized cases, the vast majority of clusters found by clustering algorithms do not correspond to real accreted UFD remnants and we can generally only recover 6% of UFDs remnants at best. These results focus exclusively on groups of stars from UFDs, which have weak dynamic signatures compared to the background of other stars. The recoverable UFD remnants are those that accreted recently,zaccretion≲ 0.5. Based on these results, we make recommendations to help guide the search for dynamically linked clusters of UFD stars in observational data. We find that real clusters generally have higher median energy andJr, providing a way to help identify real versus fake clusters. We also recommend incorporating chemical tagging as a way to improve clustering results. 
    more » « less
  6. Abstract We present chemical abundances and velocities of five stars between 0.3 and 1.1 kpc from the center of the Tucana II ultrafaint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (−3.6 < [Fe/H] < −1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [α/Fe] at [Fe/H] ≈ −2.8, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = −1.29 ± 0.48 and [Mn/Fe] = −1.33 ± 0.33, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ( dv helio / d θ 1 = 2.6 2.9 + 3.0 km s−1kpc−1), reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of M 1 / 2 ( r h ) = 1.6 0.7 + 1.1 × 10 6 M. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in situ stellar halo formation, then other UFDs should show similar such features. Although not a unique explanation, the decline in [α/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts. 
    more » « less
  7. ABSTRACT We present a high-resolution (R ∼ 35 000), high signal-to-noise (S/N = 350) Magellan/MIKE spectrum of the bright extremely metal-poor star 2MASS J1808−5104. We find [Fe/H] = −4.01 (spectroscopic LTE stellar parameters), [Fe/H] = −3.8 (photometric stellar parameters), and [Fe/H] = −3.7 (spectroscopic NLTE stellar parameters). We measured a carbon-to-iron ratio of [C/Fe] = 0.38 from the CH G-band. J1808−5104 is thus not carbon-enhanced, contrary to many other stars with similarly low-iron abundances. We also determine, for the first time, a barium abundance ([Ba/Fe] = −0.78), and obtain a significantly reduced upper limit for the nitrogen abundance ([N/Fe] < −0.2). For its [Ba/Fe] abundance, J1808−5104 has a lower [Sr/Ba] ratio compared to other stars, consistent with behaviour of stars in ultra-faint dwarf galaxies. We also fit the abundance pattern of J1808−5104 with nucleosynthesis yields from a grid of Population III supernova models. There is a good fit to the abundance pattern that suggests J1808−5104 originated from gas enriched by a single massive supernova with a high explosion energy of E = 10 × 1051 erg and a progenitor stellar mass of M = 29.5 M⊙. Interestingly, J1808−5104 is a member of the Galactic thin disc, as confirmed by our detailed kinematic analysis and calculated stellar actions and velocities. Finally, we also established the orbital history of J1808−5104 using our time-dependent Galactic potential the ORIENT. J1808−5104 appears to have a stable quasi-circular orbit and been largely confined to the thin disc. This unique orbital history, the star’s very old age (∼13.5 Gyr), and the low [C/Fe] and [Sr/Ba] ratios suggest that J1808−5104 may have formed at the earliest epoch of the hierarchical assembly of the Milky Way, and it is most likely associated with the primordial thin disc. 
    more » « less
  8. Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s−1and mean value of 381 km s−1. Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars, with iron-peak elements consistent with prior enrichment by sub-Chandrasekhar mass Type Ia supernovae. Without indication of binary companions, their chemical abundances and orbital parameters indicate that they are the accelerated tidal debris of disrupted dwarf galaxies. 
    more » « less
  9. Abstract We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A∼ 80) and second (A∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z= 34) or Te (Z= 52) detections, whoser-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤Z≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar systemr-process residual pattern. The Te abundances in these stars correlate more closely with the lighterr-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and thirdr-process-peak elements. The concept ofr-process universality that is recognized among the lanthanide and third-peak elements inr-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighterr-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤Z≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and secondr-process peaks. 
    more » « less
  10. Abstract The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with 72 12 + 10 % of its stars strongly enhanced inr-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence ofr-process-enhanced stars demonstrates that ther-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and ther-process nucleosynthesis to be less than 500 Myr. This measurement rules out anr-process source with a delay time of several Gyr or more, such as GW170817. 
    more » « less