skip to main content

Title: Chemical and Electronic Structures of Cobalt Oxynitride Films Deposited by NH3 vs. N2 Plasma: Theory vs. Experiment
The chemical structures of Co oxynitrides – in particular, interactions among N and O atoms bonded to the same cobalt – are of great importance for an array of catalytic and materials applications. X-ray diffraction (XRD), core and valence band X-ray photoelectron spectroscopy (XPS) and plane wave density functional theory (DFT) calculations are used to probe chemical and electronic interactions of nitrogen-rich CoO1-xNx (x > 0.7) films deposited on Si(100) using NH3 or N2 plasma-based sputter deposition or surface nitridation. Total energy calculations indicate that the zincblende (ZB) structure is energetically favored over the rocksalt (RS) structure for x > ~ 0.2, with an energy minimum observed in the ZB structure for x ~ 0.8 - 0.9. This is in close agreement with XPS-derived film compositions when corrected for surface oxide/hydroxide layers. XRD data indicate that films deposited on Si (100) at room temperature display either a preferred (220) orientation or no diffraction pattern, and are consistent with either rocksalt (RS) or zincblende (ZB) structure. Comparison between experimental and calculated X-ray excited valence band densities of states – also similar for all films synthesized herein – demonstrates a close agreement with a ZB, but not an RS structure. Core level more » XPS spectra exhibit systematic differences between films deposited in NH3 vs N2 plasma environments. Films deposited by N2 plasma magnetron sputtering exhibit greater O content as evidenced by systematic shifts in N 1s binding energies. Excellent agreement with experiment for core level binding energies is obtained for DFT calculations based on the ZB structure, but not for the RS structure. The agreement between theory and experiment demonstrates that these N-rich Co oxynitride films exhibit the ZB structure, and forms the basis of a predictive model for understanding how N and O interactions impact the electronic, magnetic and catalytic properties of these materials. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1757946
Publication Date:
NSF-PAR ID:
10198314
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2more »thin films were compared.« less
  2. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of thesemore »materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.« less
  3. Electroreduction of N2 to NH3 is an energy- and environmentally-friendly alternative to the Haber-Bosch process. Little is known, however, about reactive sites for electrochemical nitrogen reduction reaction (NRR) at Earth-abundant oxide or oxynitride surfaces. Here, we report N-free VIII/IV-oxide films, created by O2 plasma oxidation of polycrystalline vanadium, exhibiting N2 reduction at neutral pH with an onset potential of −0.16 V vs Ag/AgCl. DFT calculations indicate that N2 scission from O-supported V-centers is energetically favorable by ~18 kcal mol−1 compared to N-supported sites. Theory and experiment yield fundamental insights concerning the effect of metal oxophilicity towards design of earth-abundant NRR electrocatalysts.
  4. Thermal evaporation is an important technique for fabricating methylammonium lead iodide (MAPbI3), but the process is complicated by the need to co-evaporate methylammonium iodide (MAI) and PbI2. In this work, the effect of water vapor during the thermal deposition of MAPbI3 was investigated under high vacuum. The evaporation process was monitored with a residual gas analyzer (RGA), and the film quality was examined with X-ray photoelectron spectroscopy (XPS). The investigations showed that during evaporation, MAI decomposed while PbI2 evaporated as a whole compound. It was found that the residual water vapor reacted with one of the MAI-dissociated products. The higher iodine ratio suggests that the real MAI flux was higher than the reading from the QCM. The XPS analysis demonstrated that the residual water vapor may alter the elemental ratios of C, N, and I in thermally deposited MAPbI3. Morphologic properties were investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). It was observed that a sample grown with high water vapor pressure had a roughened surface and poor film quality. Therefore, an evaporation environment with water vapor pressure below 10−8 Torr is needed to fabricate high quality perovskite films.
  5. The structure of a series of lanthanide iron cobalt perovskite oxides, R (Fe 0.5 Co 0.5 )O 3 ( R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å 3 to 220.376(9) Å 3 , respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “ a ” increases as the ionic radius r ( R 3+ ) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ , and ω , which represent rotations of an octahedron about the pseudocubic perovskite [110] p , [001] p , and [111] p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° tomore »15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r ( R 3+ ) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R (Fe 0.5 Co 0.5 )O 3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe 0.5 Co 0.5 )O 3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R (Fe 0.5 Co 0.5 )O 3 samples were submitted to the Powder Diffraction File.« less