- Award ID(s):
- 1736749
- Publication Date:
- NSF-PAR ID:
- 10198592
- Journal Name:
- Remote Sensing
- Volume:
- 12
- Issue:
- 2
- Page Range or eLocation-ID:
- 326
- ISSN:
- 2072-4292
- Sponsoring Org:
- National Science Foundation
More Like this
-
Humpback whale behavior, population distribution and structure can be inferred from long term underwater passive acoustic monitoring of their vocalizations. Here we develop automatic approaches for classifying humpback whale vocalizations into the two categories of song and non-song, employing machine learning techniques. The vocalization behavior of humpback whales was monitored over instantaneous vast areas of the Gulf of Maine using a large aperture coherent hydrophone array system via the passive ocean acoustic waveguide remote sensing technique over multiple diel cycles in Fall 2006. We use wavelet signal denoising and coherent array processing to enhance the signal-to-noise ratio. To build features vector for every time sequence of the beamformed signals, we employ Bag of Words approach to time-frequency features. Finally, we apply Support Vector Machine (SVM), Neural Networks, and Naive Bayes to classify the acoustic data and compare their performances. Best results are obtained using Mel Frequency Cepstrum Coefficient (MFCC) features and SVM which leads to 94% accuracy and 72.73% F1-score for humpback whale song versus non-song vocalization classification, showing effectiveness of the proposed approach for real-time classification at sea.
-
Multiple mechanized ocean vessels, including both surface ships and submerged vehicles, can be simultaneously monitored over instantaneous continental-shelf scale regions >10,000 km 2 via passive ocean acoustic waveguide remote sensing. A large-aperture densely-sampled coherent hydrophone array system is employed in the Norwegian Sea in Spring 2014 to provide directional sensing in 360 degree horizontal azimuth and to significantly enhance the signal-to-noise ratio (SNR) of ship-radiated underwater sound, which improves ship detection ranges by roughly two orders of magnitude over that of a single hydrophone. Here, 30 mechanized ocean vessels spanning ranges from nearby to over 150 km from the coherent hydrophone array, are detected, localized and classified. The vessels are comprised of 20 identified commercial ships and 10 unidentified vehicles present in 8 h/day of Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) observation for two days. The underwater sounds from each of these ocean vessels received by the coherent hydrophone array are dominated by narrowband signals that are either constant frequency tonals or have frequencies that waver or oscillate slightly in time. The estimated bearing-time trajectory of a sequence of detections obtained from coherent beamforming are employed to determine the horizontal location of each vessel using the Moving Array Triangulationmore »
-
An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »
-
SUMMARY Infrasound sensors are deployed in a variety of spatial configurations and scales for geophysical monitoring, including networks of single sensors and networks of multisensor infrasound arrays. Infrasound signal detection strategies exploiting these data commonly make use of intersensor correlation and coherence (array processing, multichannel correlation); network-based tracking of signal features (e.g. reverse time migration); or a combination of these such as backazimuth cross-bearings for multiple arrays. Single-sensor trace-based denoising techniques offer significant potential to improve all of these various infrasound data processing strategies, but have not previously been investigated in detail. Single-sensor denoising represents a pre-processing step that could reduce the effects of ambient infrasound and wind noise in infrasound signal association and location workflows. We systematically investigate the utility of a range of single-sensor denoising methods for infrasound data processing, including noise gating, non-negative matrix factorization, and data-adaptive Wiener filtering. For the data testbed, we use the relatively dense regional infrasound network in Alaska, which records a high rate of volcanic eruptions with signals varying in power, duration, and waveform and spectral character. We primarily use data from the 2016–2017 Bogoslof volcanic eruption, which included multiple explosions, and synthetics. The Bogoslof volcanic sequence provides an opportunity to investigatemore »
-
Airgun source systems generate low frequency underwater sound used in reflection and refraction seismology for mapping ocean bottom stratigraphy with important applications in ocean geosciences, such as understanding plate tectonics, ascertaining ocean geological history and climate change, and offshore hydrocarbon prospecting. Seismo-acoustic airgun signals from geophysical surveying activity were recorded at very long ranges, spanning roughly 175-195 km, on a large-aperture densely-populated linear coherent hydrophone array in the Norwegian Sea during Spring 2014. Off the coast of Alesund, airgun signals were detected with 8 s inter-pulse intervals for 3 to 24 hour time periods per day over the 4 days of hydrophone array operation in that region. Here we provide a time-frequency characterization and bearing-time estimation of the received airgun pulses. By correcting for transmission losses in the range- and depth-dependent Norwegian Sea environment, we estimate the source level distribution back projected to a distance of 1 m from the airgun source system. This back-projected source level distribution is then applied to model the Probability of Detection (PoD) region for the airgun signals with the coherent hydrophone array as the receiver in the Norwegian Sea employing the passive ocean acoustic waveguide remote sensing (POAWRS) technique. The estimates of back-projected sourcemore »